ADA

SINGLE COMMON POWERTRAIN LUBRICANT (SCPL) DEVELOPMENT (PART 3)

INTERIM REPORT TFLRF No. 462

by Adam C. Brandt Edwin A. Frame

U.S. Army TARDEC Fuels and Lubricants Research Facility Southwest Research Institute® (SwRI®)
San Antonio, TX

for Mr. Allen S. Comfort U.S. Army TARDEC Force Projection Technologies Warren, Michigan

Contract No. W56HZV-09-C-0100 (WD20 & WD21)

UNCLASSIFIED: Distribution Statement A. Approved for public release

February 2015

Disclaimers

Reference herein to any specific commercial company, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product endorsement purposes.

Contracted Author

As the author(s) is(are) not a Government employee(s), this document was only reviewed for export controls, and improper Army association or emblem usage considerations. All other legal considerations are the responsibility of the author and his/her/their employer(s).

DTIC Availability Notice

Qualified requestors may obtain copies of this report from the Defense Technical Information Center, Attn: DTIC-OCC, 8725 John J. Kingman Road, Suite 0944, Fort Belvoir, Virginia 22060-6218.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

SINGLE COMMON POWERTRAIN LUBRICANT (SCPL) DEVELOPMENT (PART 3)

INTERIM REPORT TFLRF No. 462

by Adam C. Brandt Edwin A. Frame

U.S. Army TARDEC Fuels and Lubricants Research Facility Southwest Research Institute[®] (SwRI[®]) San Antonio, TX

for Mr. Allen S. Comfort U.S. Army TARDEC Force Projection Technologies Warren, Michigan

Contract No. W56HZV-09-C-0100 (WD20 & WD21) SwRI[®] Project No. 08.14734.20 & 08.14734.21

UNCLASSIFIED: Distribution Statement A. Approved for public release

February 2015

Approved by:

Gary B. Bessee, Director

U.S. Army TARDEC Fuels and Lubricants

Research Facility (SwRI®)

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 2015-02-27 **Interim Report** September 2012 – February 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W56HZV-09-C-0100 Single Common Powertrain Lubricant (SCPL) Development (Part 3) **5b. GRANT NUMBER** 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) **5d. PROJECT NUMBER** Brandt, Adam C; Frame, Edwin A. SwRI 08.14734.20 08.14734.21 5e. TASK NUMBER WD 20 & WD 21 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT **NUMBER** U.S. Army TARDEC Fuels and Lubricants Research Facility (SwRI®) TFLRF No. 462 Southwest Research Institute® P.O. Drawer 28510 San Antonio, TX 78228-0510 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) U.S. Army RDECOM 11. SPONSOR/MONITOR'S REPORT U.S. Army TARDEC NUMBER(S) Force Projection Technologies

12. DISTRIBUTION / AVAILABILITY STATEMENT

UNCLASSIFIED: Dist A

Warren, MI 48397-5000

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The objective of this project was to continue validation testing of two SCPL candidates that have been further revised for improved performance based off of previously attained results during SCPL Development Parts 1 and 2. This report discusses results for: chemical and physical bench testing, transmission application frictional testing, high temperature 2-cycle diesel engine compatibility, and Mack T-12 wear performance testing. All testing shows that the revised SCPL candidates still have areas where they can be improved upon for industry standardized testing. However, all testing in military applications (apart from high temperature two cycle diesel engines) has shown positive results.

15. SUBJECT TERMS

Single Common Powertrain Lubricant (SCPL), Detroit Diesel Corporation (DDC) 6V53T, High Temperature Oil Endurance, MIL-PRF-46167, MIL-PRF-2104, Total Acid Number (TAN), Total Base Number (TBN), Wear Metals, Oxidation, Fuel Economy, Pumping Losses, Transmission, Caterpillar TO-4, Allison C4, Mack T-12

16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT	b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NUMBER (include area code)
Unclassified	Unclassified	Unclassified	Unclassified	387	,

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18

EXECUTIVE SUMMARY

The objective of this project was to continue validation testing of two SCPL candidates that have been further revised for improved performance based upon previously attained results during SCPL Development Parts 1 and 2. This report discusses results for: chemical and physical bench testing, transmission application frictional testing, high temperature 2-cycle diesel engine compatibility, and Mack T-12 wear performance testing.

All testing shows that the revised SCPL candidates still have areas where they can be improved upon in industry standardized tests. However, all testing in military applications apart from high temperature two cycle diesel engines has shown positive results. The following conclusions can be made from these final test areas reported:

- Bench top analytical testing showed revised candidates exceed industry standards for high temperature bearing corrosion, foaming resistance, and elastomer compatibility.
- SCPL candidates still show borderline failures in some of the standardized transmission testing, but as previously analyzed, failures occurring are not expected to cause compatibility issues in military equipment due to the minimal excursions past the frictional limit lines in testing. All applied transmission testing conducted in the RAM-D Stryker testing and field demonstrations has shown that transmission function remains acceptable while using the SCPL.
- Use of the SCPL in high temperature two cycle diesel engines is not advisable. The critical piston/liner architecture in two cycle diesel engines does not tolerate low viscosity and increased operating temperatures, and results in uncontrolled liner scuffing.
- Results from standardized Mack T-12 test were varied. Neither SCPL candidate met the CJ-4 accreditation level, but test results are questionable based on industry wide consistency issues within the test.

FOREWORD/ACKNOWLEDGMENTS

The U.S. Army TARDEC Fuel and Lubricants Research Facility (TFLRF) located at Southwest Research Institute (SwRI), San Antonio, Texas, performed this work during the period of September 2012 through February 2015 under Contract No. W56HZV-09-C-0100. The U.S. Army Tank Automotive RD&E Center, Force Projection Technologies, Warren, Michigan administered the project. Mr. Eric Sattler (RDTA-SIE-ES-FPT) served as the TARDEC contracting officer's technical representative. Mr. Allen Comfort of TARDEC served as project technical monitor.

The authors would like to acknowledge the contribution of the TFLRF technical support staff and administrative support staff.

TABLE OF CONTENTS

Sect	<u>ion</u>			<u>Page</u>
EXI	ECUT	IVE SI	JMMARY	v
			CKNOWLEDGMENTS	
			ES	
			ES	
1.0	INT	RODU	CTION & BACKGROUND	1
2.0	OBJ	ECTIV	/E & APPROACH	2
3.0	DIS	CUSSI	ON OF RESULTS	2
	3.1	Снем	MICAL & PHYSICAL PROPERTY BENCH TESTING	3
		3.1.1	High Temperature Corrosive Bearing Test	3
		3.1.2	Foaming Properties	4
		3.1.3	Elastomer Compatibility	5
	3.2	TRAN	ISMISSION TESTING	6
		3.2.1	Allison C4 Testing	6
			Graphite	
			Paper	
		3.2.2	Caterpillar TO-4M	10
	3.3	HIGH	TEMPERATURE 2-CYCLE DIESEL TESTING	12
		3.3.1	Test Stand Construction.	12
		3.3.2	Test Cycle Operation	15
		3.3.3	Engine Metrology and Ratings	
		3.3.4	MIL-PRF-2104H High Temperature Results	
		3.3.5	Revised SCPL Candidate Results	20
	3.4	STAN	dardized Mack T-12 Durability	24
		3.4.1	SCPL Candidate LO292039	
		3.4.2	SCPL Candidate LO306520	26
4.0	CO	NCLUS	SIONS	27
5.0	REF	FEREN	CES	28
6.0	TFL	RF SC	PL REPORT BIBLIOGRAPHY	29
	'END		Transmission Bench Test Reports	A-1
APP	'END	IX B.	Test Report, LO288074 MIL-PRF-2104H 15W40, DDC 6V53T	
			High Temperature Evaluation	B-1
APP	'END	IX C.	Test Report, LO274845 (LO292039) Revised SCPL, DDC 6V53T	a 1
4 D.D.	ירואדו	IV D	High Temperature Evaluation	
APP	'END	IX D.	Mack T-12 Test Reports	D-1

LIST OF FIGURES

<u>Figure</u>		<u>Page</u>
Figure 1.	Detroit Diesel 6V53T Test Cell Installation	13
Figure 2.	SCPL High Temp 6V53T Evaluation, Liner 2R Removed at 120hrs	21
Figure 3.	SCPL High Temp 6V53T Evaluation, Liner 1R Removed at 160hrs	21
Figure 4.	SCPL High Temp 6V53T Evaluation, 160hr 1R Replaced Piston Removed at 200hrs	23
Figure 5.	SCPL High Temp 6V53T Evaluation, 160hr 2R Replaced Piston Removed at 200hrs	23
Figure 6.	SCPL High Temp 6V53T Evaluation, 160hr 3R Replaced Piston Removed at 200hrs	24

LIST OF TABLES

Table		Page
Table 1.	Chemical and Physical Property Analysis	3
Table 2.	ASTM D6594 HTCBT Results	4
Table 3.	ASTM D892 Foaming Characteristics	4
Table 4.	ASTM D7216 Elastomer Compatibility Results	5
Table 5.	Allison C4 Graphite Results – LO292039	7
Table 6.	Allison C4 Graphite Results – LO306520	8
Table 7.	Allison C4 Paper Results – LO292039	9
Table 8.	Allison C4 Paper Results – LO306520	10
Table 9.	Caterpillar TO-4M Results – LO292039	11
Table 10.	Caterpillar TO-4M Results – LO306520	11
Table 11.	DDC 6V53T Operating Conditions	16
Table 12.	DDC 6V53T Used Oil Analysis Tests	17

ACRONYMS AND ABBREVIATIONS

6V53T - 6 cylinder, v-configuration, 53 cubic inches per cylinder, turbocharged diesel engine

ASTM - American Society of Testing and Materials

BDC - bottom dead center

DDC - Detroit Diesel Corporation

EGR – exhaust gas recirculation

F/B – front/back direction

FRRET – friction retention

FTM - federal test method

GOCO – government owned, contractor operated

HTCBT – High Temperature Corrosive Bearing Test

MIL - military

MIL-PRF – military performance

RAM-D – reliability, availability, maintainability, and durability

SCPL - Single Common Powertrain Lubricant

SOW – statement/scope of work

SwRI - Southwest Research Institute

T/AT – thrust/anti thrust direction

TARDEC - Tank Automotive Research Development and Engineering Center

TFLRF - TARDEC Fuels and Lubricants Research Facility

ULSD – ultra low sulfur diesel fuel

1.0 INTRODUCTION & BACKGROUND

The U.S. Army has a desire to consolidate multiple lubricant specifications into a single specification, or Single Common Powertrain Lubricant (SCPL). The application of this fluid would include engine lubrication, power shift transmission operation, and limited use in hydraulic systems where MIL-PRF-2104 products are currently used. The SCPL must be designed to operate in ambients ranging from low temperature arctic to high temperature desert conditions, representative of the wide range of potential military operating conditions. In addition, the SCPL must meet or exceed performance currently attained by approved MIL specification products. By achieving these goals, multiple lubricant specifications could be reduced into a single specified product that could be used in tactical and combat vehicles in any seasonal or geographical location. The development of this lubricant has the potential to reduce the logistical burden on the military's supply chain, reduce operating costs, and improve lubricant performance beyond current fielded products.

Due to the extreme application requirements and performance goals, it is probable that the SCPL be formulated from synthetic basestocks. To offset the increased price of synthetic basestocks, several performance goals must be met by the SCPL, such as increased vehicle fuel efficiency and extended drain intervals. Research has shown that there is a potential reduction in fuel consumption through the use of low viscosity lubricating fluids [1,2]. This change in fuel consumption is attributed to the reduction in mechanical losses within the system. These mechanical losses can be related to frictional properties, pumping efficiencies, and overall bulk churning in mechanical applications. Although reductions in fuel consumption through viscosity changes are expected to be relatively small (1-2%), when incrementally multiplied over a large group of vehicles such as the military's combat and tactical fleet, fuel savings and thus cost savings can be substantial. This drive for viscosity reduction as a means of efficiency increase complements the SCPL's requirement to provide extreme cold climate performance, as low fluid viscosities are required to ensure low temperature pumpability than typical heavy duty diesel oils. Synthetic basestocks also typically offer an increased resistance to oil degradation, which allows the extension drain interval times, resulting in reduced required maintenance. This extension of service intervals, combined with the increased efficiency through lowered viscosity

help offset costs associated with the use of synthetic basestocks over typical petroleum basestocks [3,4,5].

This report is the third and final in a series covering the SCPL development, and focuses on the final refinement and primarily industry standardized testing of two initial SCPL candidates identified during research reported in TFLRF Interim Report 418, Single Common Powertrain Lubricant (SCPL) Development (hereinafter referred to as Part 1) [4], and TFLRF Interim Report 442, Single Common Powertrain lubricant (SCPL) Development Part 2 (hereinafter referred to as Part 2) [5]. All testing reported was completed at the government owned, contractor operated (GOCO) U.S. Army TARDEC Fuels and Lubricants Research Facility (TFLRF), located at Southwest Research Institute (SwRI) in San Antonio, Texas. Performance investigations reported include: bench testing to analyze candidate physical properties, transmission application frictional testing, high temperature 2-cycle diesel engine compatibility using the Detroit Diesel Corporation (DDC) 6V53T, and American Society for Testing and Materials (ASTM) D7422 Mack T-12 wear performance testing.

2.0 OBJECTIVE & APPROACH

The overall objective of this project was to continue validation testing, in primarily industry standardized testing, of two SCPL candidates that have been further revised for improved performance based off of previously attained results during SCPL development Part 1 and Part 2. This data would reinforce the previously feasibility studies [6,7,8], preliminary development efforts in SCPL development Part 1 and Part 2, and verify final candidate advancement towards the goals of the SCPL.

3.0 DISCUSSION OF RESULTS

The following sections discuss latest SCPL candidate results for: chemical and physical bench testing, transmission application frictional testing, high temperature 2-cycle diesel engine compatibility, and Mack T-12 wear performance testing.

3.1 CHEMICAL & PHYSICAL PROPERTY BENCH TESTING

Table 1 shows the chemical and physical property analysis of the latest candidate revisions compared to the versions tested during SCPL development Part 1 and Part 2. As shown, the latest revision of candidate B has improved the low temperature viscosity at -48 °C, and also has reduced NOACK volatility. These were both desired improvement from the Part 2 candidate analysis. Candidate A appears to be similar overall to its previous versions, with its most notable change being seen as increased low temperature viscosity.

Table 1. Chemical and Physical Property Analysis

				Initial Candidates (Part 1)			Revised Candidates (Part 2)		Revised Candidates (Part 3)	
				а	b		а	b	а	b
				LO253071	LO251746		LO268869	LO271510*	LO306520	LO292039
Method	Temp	Property	Units							
D445	-40°C	Viscosity	cSt	7661.6	11158		14798.2	12885.34	15353.02	13254.19
D445	100°C	High Temp Viscosity	cSt	8.42	8.13		8.6	8.49	8.86	8.5
D445 LT	-48°C	Low Temp Viscosity	cSt	36325.09	38427.23		27003.4	**	48529.97	47319.38
D4683 TBS	150°C	Tapered Bearing Shear Viscosity	cPs	2.69	2.59		2.73	2.68	2.88	2.78
D5800		Noack Volitility	wt%	10	12.4		12	14.3	12.2	12.2
D7109	100°C	Shear Stability								
		Viscosity @ 100C after 30 Passes	cSt	8.33	8.11		8.59	8.43	8.88	8.41
		Viscosity loss after 30 Passes	% Loss	1.07	0.25		0.12	0.71	-0.226	1.059
		Viscosity @ 100C after 90 Passes	cSt	8.22	8.07		8.55	8.47	8.95	8.46
Viscosity loss after 90 Passes		% Loss	2.38	0.74		0.58	0.24	-1.016	0.471	
D97		Pour Point	ပ္	-60	<-60		<-63	<-60	-60	-60
		*Same as LO2748	45 **The s	ample is too v	iscous to obta	air	repeatable r	esults.		

(Note: Two LO numbers are provided for Part 2 revised candidate b: LO271510 and LO274845. The oil is identical, but was provided in separate batches, thus identified differently for record keeping)

The following sections cover results from three additional standardized tests conducted on the revised candidates, including: high temperature corrosive bearing protection, foaming properties, and elastomer compatibility.

3.1.1 High Temperature Corrosive Bearing Test

The ASTM D6594 High Temperature Corrosive Bearing Test (HTCBT) was conducted on each revised candidate to determine the lubricants tendency to corrode various metals, specifically alloys of lead and copper commonly found in the construction of engine bearing shells. This test is conducted by immersing specimens of copper, lead, tin, and phosphor bronze in the candidate oil, which is then heated and blown with air for a specified period of time. After the test is

completed the copper specimen is examined for color, and the oil is analyzed to determine corrosion products. Table 2 shows the HTCBT results for each revised candidate.

Table 2. ASTM D6594 HTCBT Results

High Temperature Corrosive Bearing Test								
	MIL-PRF-2104J Limits	Units	LO292039	LO306520				
Copper (Cu) Increase	20 (max)	ppm	6	7				
Lead (Pb) Increase	120 (max)	ppm	6	52				
Tin (Sn) Increase	Report	ppm	0	0				
Copper Strip D-130 Rating	3 (max)	_	1b	1b				
	Pass/Fail?	-	Pass	Pass				

As shown, both of the revised candidates passed the HTCBT test based on limits established in the MIL-PRF-2104J specification. Candidate LO306520 did show an increased accumulation of lead suggesting more aggressive corrosion than LO292039, but was still well below the 120ppm maximum limit as specified in MIL-PRF-2104J.

3.1.2 Foaming Properties

The ASTM D892 Foaming test determines the foaming characteristics of lubricating oils at two specified temperatures. This test aims to empirically rate the foaming tendency and stability of lubricating oils. This test is conducted by maintaining specified volume of lubricant at a specific temperature and injecting air into it at a constant rate for 5 minutes. The volume of foam formed is then recorded and the air supply is removed, allowing the oil to settle for an additional 5 minutes. After the settling time, the final volume of foam remaining is reported. Separate oil quantities are used for test sequence 1 and 2, but test sequence 3 reuses the same oil from test sequence 2 after cooling. Table 3 shows the foaming results for each revised candidate.

Table 3. ASTM D892 Foaming Characteristics

Foaming Characteristics							
		MIL-PRF-2104J	LO292039	LO306520			
Seq.	Temp.	Limits	10232033	10300320			
Seq 1	24C	10/0	0/0	0/0			
Seq 2	93C	20/0	10/0	0/0			
Seq 3	24C	10/0	0/0	0/0			

Volume of foam (mL) after 5 minutes blowing/Volume of foam (mL) after 10 minutes settling time

As shown, both of the revised candidates passed the foaming test based on limits established in the MIL-PRF-2104J specification. Apart from some small foaming present in LO292039 after the initial 5 minutes of air injection at 93 °C, no other foam accumulation was reported.

3.1.3 Elastomer Compatibility

The ASTM D7216 Elastomer Compatibility test evaluates the compatibility of automotive engine oils with common elastomers typically used in automotive sealing applications. Compatibility is determined by measurement of the volumetric change, durometer hardness, and tensile properties of elastomer specimens after being immersed in the candidate oils for a specified time and temperature. The elastomers evaluated by this test includes nitrile, polyacrylate, fluoroelastomer, silicon, and vamac. Table 4 shows the compatibility results for the two latest revision SCPL candidates.

Table 4. ASTM D7216 Elastomer Compatibility Results

	Elastomer Compatilibty							
Elastomer	Batch	Acceptance Limits	LO292039	LO306520				
Nitrile	NBRBC14							
Vol	ume Change	5.62 to -3.62	-0.19	1.66				
	Hardness	8 to -6	5	4				
Ten	sile Strength	17.3 to -49.6	0.2	0.8				
	Elongation	15.7 to -66.8	-40	-37.2				
Polyacrylate	ACMBC14							
Vol	ume Change	5.62 to -3.62	-1.22	0.7				
	Hardness	9 to -6	3	1				
Ten	sile Strength	26.2 to -23.2	-0.2	2.2				
	Elongation	19.1 to -44.1	-5.9	-0.8				
Fluoroelastomer	FKMBC14							
Vol	ume Change	5.13 to -2.13	0.74	0.96				
	Hardness	8 to -6	0	0				
Ten	sile Strength	13.9 to -81.1	-50.6	-37.4				
	Elongation	16.3 to -86.3	-48.4	-38.1				
Silicon	VMQBC13							
Vol	ume Change	26.84 to -4.50	22.05	20.62				
	Hardness	6 to -21	-18	-18				
Ten	sile Strength	15.7 to -50.7	-8.7	-7.1				
	Elongation	28.1 to -38.1	-2.5	-8.4				
Vamac	MACBC9							
Vol	ume Change	20.90 to -4.67	9.32	11.9				
	Hardness	6 to -11	-4	-5				
Ten	sile Strength	17.1 to -28.0	-7.9	-2.4				
	Elongation	19.0 to -43.0	-28.5	-28.8				
		Pass/Fail?	Pass	Pass				

As shown, both candidates met the specified acceptance limits as defined in the test method. This

suggests that both oils should be compatible with typical engine seal applications, and should not

be susceptible to the formation of leaks.

3.2 TRANSMISSION TESTING

Transmission frictional property testing conducted on each of the revised candidates included:

Allison C4 graphite and paper testing, and Caterpillar TO-4M sequences 1220, 1222, and friction

retention (FRRET). Results are discussed below in the following sections. Full test reports are

included in Appendix A.

3.2.1 Allison C4 Testing

The following outlines the individual results for the C4 graphite and paper-composite testing.

Graphite

Table 5 and Table 6 show the C4 graphite results for revised candidates LO292039 and

LO306520 respectively. Each is shown with its preceding results from SCPL development Part 1

and Part 2. Since the previous testing was completed, the C4 Graphite test was updated to

Batch 45 friction material, and the C4 specification has been replaced by the Allison TES-439

specification. All previous testing was completed using Batch 44 material under the C4 spec.

Unfortunately since the C4 spec is obsolete, Batch 45 limits were only established for the TES-

439 specification. As a result, direct read across to previous C4 specification limits is not

possible. The new TES-439 limits for Batch 45 hardware is as follows:

• Slip time (seconds): 0.73 to 0.89

• Midpoint coefficient: 0.085 to 0.105

These limits are applied to the Cycle 5500 results only, and when analyzing the results from the

revised SCPL candidates, both candidates meet the new TES-439 specification.

UNCLASSIFIED

6

Table 5. Allison C4 Graphite Results - LO292039

Initial Candidate

ALLISON C-4 GRAPHITE FRICTION TEST SUMMARY

(Torque in Ft-Lbs)

 Sponsor Fluid Code:
 LO251746
 Test Number:
 C4-7-1285

 Lab Fluid Code:
 LO-251746
 Fric. Plate Batch:
 Batch 44

 Completion Date:
 7/21/2010
 Steel Plate Batch:
 10/9/2008

	Li	Limits		Results		
	Max	Max Change	1,500 N	5,500 N	% Change	P/F
Slip Time Max.	0.89	N/A	0.81	0.90	11.11	F
0.2 Second Dynamic Coeff.	N/A	N/A	0.072	0.048	-33.333	
Mid-Point Fric. Coeff. Min.	0.089	N/A	0.090	0.084	-6.667	F
Static Friction Coeff.	N/A	N/A	0.142	0.136	-4.225	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.160	0.153	-4.375	
0.25 Second Low Speed Coeff.	N/A	N/A	0.149	0.142	-4.698	

1st Revision

ALLISON C-4 GRAPHITE FRICTION TEST SUMMARY

(Torque in Ft-Lbs)

 Sponsor Fluid Code: L0271510
 Test Number: C4-4-1342

 Lab Fluid Code: 271510
 Fric. Plate Batch: Lot 44

 Completion Date: 10/15/2011
 Steel Plate Batch: 10/9/2008

	L	Limits		Results		
	Max	Max Change	1,500 N	5,500 N	% Change	P/F
Slip Time Max.	0.89	N/A	0.76	0.81	6.58	Р
0.2 Second Dynamic Coeff.	N/A	N/A	0.086	0.077	-10.465	
Mid-Point Fric. Coeff. Min.	0.089	N/A	0.097	0.094	-3.093	Р
Static Friction Coeff.	N/A	N/A	0.140	0.128	-8.571	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.164	0.148	-9.756	
0.25 Second Low Speed Coeff.	N/A	N/A	0.147	0.140	-4.762	

2nd Revision

ALLISON C-4 GRAPHITE FRICTION TEST SUMMARY

(Torque in Ft-Lbs)

 Sponsor Fluid Code: L0292039
 Test Number: C4-9-1449

 Lab Fluid Code: 292039
 Fric. Plate Batch: Lot 45

 Completion Date: 1/30/2014
 Steel Plate Batch: 10/9/2008

	Limits		Results		
	Max Max Change	1,500 N	5,500 N	% Change	P/F
Slip Time Max.	Note: TES-228 (C4)	0.71	0.78	9.86	N/A
0.2 Second Dynamic Coeff.	specification obsolete.	0.097	0.082	-15.464	
Mid-Point Fric. Coeff. Min.	Batch 45 limits only apply	0.106	0.097	-8.491	N/A
Static Friction Coeff.	to test conducted for	0.148	0.136	-8.108	
Low Speed Peak Fric. Coeff.	Allison TES-439 and TES-295	0.169	0.160	-5.325	
0.25 Second Low Speed Coeff.	specifications.	0.156	0.145	-7.051	

Table 6. Allison C4 Graphite Results – LO306520

Initial Candidates

ALLISON C-4 GRAPHITE FRICTION TEST SUMMARY

(Torque in Ft-Lbs)

 Sponsor Fluid Code:
 LO253071
 Test Number:
 C4-8-1286

 Lab Fluid Code:
 LO-253071
 Fric. Plate Batch:
 BATCH 44

 Completion Date:
 7/22/2010
 Steel Plate Batch:
 10/9/2008

	Li	Limits		Results		
	Max	Max Change	1,500 N	5,500 N	% Change	P/F
Slip Time Max.	0.89	N/A	0.79	0.91	15.19	F
0.2 Second Dynamic Coeff.	N/A	N/A	0.084	0.063	-25.000	
Mid-Point Fric. Coeff. Min.	0.089	N/A	0.093	0.082	-11.828	F
Static Friction Coeff.	N/A	N/A	0.129	0.112	-13.178	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.154	0.136	-11.688	
0.25 Second Low Speed Coeff.	N/A	N/A	0.130	0.123	-5.385	

1st Revision

ALLISON C-4 GRAPHITE FRICTION TEST SUMMARY

(Torque in Ft-Lbs)

 Sponsor Fluid Code:
 LO268869
 Test Number:
 C4-3-1341

 Lab Fluid Code:
 268869
 Fric. Plate Batch:
 Lot 44

 Completion Date:
 10/14/2011
 Steel Plate Batch:
 10/9/2008

	Li	Limits		Results		
	Max	Max Change	1,500 N	5,500 N	% Change	P/F
Slip Time Max.	0.89	N/A	0.75	0.86	14.67	Р
0.2 Second Dynamic Coeff.	N/A	N/A	0.090	0.067	-25.556	
Mid-Point Fric. Coeff. Min.	0.089	N/A	0.099	0.087	-12.121	F
Static Friction Coeff.	N/A	N/A	0.132	0.113	-14.394	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.138	0.123	-10.870	
0.25 Second Low Speed Coeff.	N/A	N/A	0.126	0.112	-11.111	

2nd Revision

ALLISON C-4 GRAPHITE FRICTION TEST SUMMARY

(Torque in Ft-Lbs)

 Sponsor Fluid Code: L0306520
 Test Number: C4-8-1459

 Lab Fluid Code: 306520
 Fric. Plate Batch: Lot 45

 Completion Date: 3/10/2014
 Steel Plate Batch: 10/9/2008

	Limits	Results			
	Max Max Change	1,500 N	5,500 N	% Change	P/F
Slip Time Max.	Note: TES-228 (C4)	0.71	0.86	21.13	N/A
0.2 Second Dynamic Coeff.	specification obsolete.	0.101	0.073	-27.723	
Mid-Point Fric. Coeff. Min.	Batch 45 limits only apply	0.105	0.089	-15.238	N/A
Static Friction Coeff.	to test conducted for	0.121	0.103	-14.876	
Low Speed Peak Fric. Coeff.	Allison TES-439 and TES-295	0.150	0.123	-18.000	
0.25 Second Low Speed Coeff.	specifications.	0.122	0.113	-7.377	

Paper

Table 7 and Table 8 show the C4 paper results for revised candidates LO292039 and LO306520 respectively. Unlike the graphite tests, these evaluations still had sufficient hardware available to run consistent with previous SCPL development testing, despite the C4 specification being replaced with TES-439. As shown, candidate LO292039 passed both limits for the paper testing, while candidate LO306520 still experienced a failure on the midpoint coefficient of friction. Much like previous testing the result was borderline early in the test, but as cycling progressed the friction response moved into an acceptable range. This response would not be expected to cause significant compatibility issues within military transmissions.

Table 7. Allison C4 Paper Results - LO292039

Initial Candidates

ALLISON C- 4 PAPER FRICTION TEST

Sponsor Fluid Code: LO-251746 Lab Fluid Code: 251746 Completion Date: 07/23/2010 Test Number: C2-6-1551
Fric. Plate Batch: BATCH 5
Steel Plate Batch: 10/9/2008

	Li	Limits		Results		
	Value	% Change	100 N	10,000 N	% Change	P/F
Slip Time Max.	0.600	N/A	0.470	0.420	-10.64	Р
Mid-Point Fric. Coeff. Min.	0.096	N/A	0.103	0.120	16.50	Р
Static Friction Coeff.	N/A	N/A	0.173	0.160	-7.51	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.197	0.173	-12.18	
0.25 Second Low Speed Coeff.	N/A	N/A	0.182	0.165	-9.34	

1st Revision

ALLISON C-4 PAPER FRICTION TEST

Sponsor Fluid Code: LO271510 Lab Fluid Code: 271510 Completion Date: 10/17/2011 Test Number: C2-4-1574
Fric. Plate Batch: Lot 6
Steel Plate Batch: 10/9/2008

		imits		Results		1
	-	IIIIII		resuits		
	Value	% Change	100 N	10,000 N	% Change	P/F
Slip Time Max.	0.600	N/A	0.500	0.430	-14.00	Р
Mid-Point Fric. Coeff. Min.	0.096	N/A	0.095	0.118	23.16	Р
Static Friction Coeff.	N/A	N/A	0.173	0.158	-8.67	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.187	0.166	-11.23	
0.25 Second Low Speed Coeff.	N/A	N/A	0.171	0.163	-9.94	1

2nd Revision

ALLISON C- 4 PAPER FRICTION TEST

Sponsor Fluid Code: LO292039 Lab Fluid Code: LO292039 Completion Date: 1/29/2014 Test Number: C2-7-1615
Fric. Plate Batch: LOT 6
Steel Plate Batch: 10/9/2008

	Limits		Results			
	Value	% Change	100 N	10,000 N	% Change	P/F
Slip Time Max.	0.600	N/A	0.500	0.430	-14.00	Р
Mid-Point Fric. Coeff. Min.	0.096	N/A	0.096	0.116	20.83	Р
Static Friction Coeff.	N/A	N/A	0.170	0.152	-10.59	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.185	0.162	-12.43	
0.25 Second Low Speed Coeff.	N/A	N/A	0.176	0.156	-11.36	

Table 8. Allison C4 Paper Results – LO306520

Initial Candidates

ALLISON C- 4 PAPER FRICTION TEST

Sponsor Fluid Code: LO-253071 Lab Fluid Code: 253071 Completion Date: 07/25/2010 Test Number: C2-7-1552
Fric. Plate Batch: Batch 5
Steel Plate Batch: 10/9/2008

	Limits		Results			
	Value	% Change	100 N	10,000 N	% Change	P/F
Slip Time Max.	0.600	N/A	0.540	0.450	-16.67	Р
Mid-Point Fric. Coeff. Min.	0.096	N/A	0.087	0.114	31.03	F
Static Friction Coeff.	N/A	N/A	0.161	0.125	-22.36	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.173	0.135	-21.97]
0.25 Second Low Speed Coeff.	N/A	N/A	0.163	0.131	-19.63	

1st Revision

ALLISON C- 4 PAPER FRICTION TEST

Sponsor Fluid Code: LO268869 Lab Fluid Code: 268869 Completion Date: 10/15/2011 Test Number: C2-3-1573
Fric. Plate Batch: Lot 6
Steel Plate Batch: 10/9/2008

	L	Limits		Results		
	Value	% Change	100 N	10,000 N	% Change	P/F
Slip Time Max.	0.600	N/A	0.530	0.460	-13.21	Р
Mid-Point Fric. Coeff. Min.	0.096	N/A	0.093	0.111	19.35	F
Static Friction Coeff.	N/A	N/A	0.103	0.111	7.77	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.102	0.115	12.75	
0.25 Second Low Speed Coeff.	N/A	N/A	0.095	0.111	16.84	

2nd Revision

ALLISON C- 4 PAPER FRICTION TEST

Sponsor Fluid Code: LO306520 Lab Fluid Code: 306520 Completion Date: 3/9/2014 Test Number: C2-8-1616
Fric. Plate Batch: Lot 6
Steel Plate Batch: 10/9/2008

	Limits		Results			
	Value	% Change	100 N	10,000 N	% Change	P/F
Slip Time Max.	0.600	N/A	0.520	0.460	-11.54	Р
Mid-Point Fric. Coeff. Min.	0.096	N/A	0.094	0.110	17.02	F
Static Friction Coeff.	N/A	N/A	0.118	0.132	11.86	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.118	0.135	14.41	
0.25 Second Low Speed Coeff.	N/A	N/A	0.117	0.134	14.53	

3.2.2 Caterpillar TO-4M

Table 9 and Table 10 show the Caterpillar TO-4M results for revised candidates LO292039 and LO306520 respectively. Each is shown with its preceding results from SCPL development Part 1 and Part 2. Both candidates continue to struggle with various areas of the testing, and both do not meet limit conditions in comparison to reference oils. As with previous testing, most failures observed appeared to be borderline overall, with only small segments of the resulting data falling outside reference oil limit lines, and the majority remaining in acceptable ranges. This response is again not expected to cause significant compatibility issues within military transmissions. (Note: CAT TO-4M Sequence 1222 is not a specification requirement called out in MIL-PRF-

2104. Its inclusion into the test matrix was more focused on gathering supplemental friction data on alternative materials.)

Table 9. Caterpillar TO-4M Results – LO292039

CAT TO-4	LO251746	LO271510	LO292039
Sequence 1220	initial	1st Revision	2nd Revision
Dynamic Coef vs Cycle	Fail	Pass	Fail
Dynamic Coef vs Load	Fail	Pass	Fail
Dynamic Coef vs Speed	Fail	Pass	Fail
Energy Limit	Pass	Pass	Pass
Static Coef vs Load	Fail	Pass	Pass
Static Coef vs Speed	Fail	Pass	Pass
Energy Limit	Pass	Pass	Pass
Total Wear	0.039	0.006	0.02
Sequence 1222			
Dynamic Coef vs Cycle	Fail	Fail	Pass
Dynamic Coef vs Load	Fail	Fail	Pass
Dynamic Coef vs Speed	Fail	Fail	Pass
Energy Limit	Pass	Pass	Pass
Static Coef vs Load	Fail	FP	Pass
Static Coef vs Speed	Fail	Pass	Pass
Energy Limit	Pass	Pass	Pass
Total Wear	0.007	0.029	0.033
Friction Retention	•		
	Pass	N/A	Fail (boarderline)

Table 10. Caterpillar TO-4M Results – LO306520

CAT TO-4	LO253071	LO268869	LO306520
Sequence 1220	initial	1st Revision	2nd Revision
Dynamic Coef vs Cycle	Pass	Pass	Fail
Dynamic Coef vs Load	Pass	Pass	Fail
Dynamic Coef vs Speed	Pass	Pass	Pass
Energy Limit	Pass	Pass	Pass
Static Coef vs Load	Pass	Pass	Pass
Static Coef vs Speed	Pass	Pass	Pass
Energy Limit	Pass	Pass	Pass
Total Wear	0.039	0.016	0.012
Sequence 1222			•
Dynamic Coef vs Cycle	Fail	Fail	Fail
Dynamic Coef vs Load	Fail	Fail	Fail
Dynamic Coef vs Speed	Fail	Fail	Pass
Energy Limit	Pass	Pass	Fail
Static Coef vs Load	Fail	Fail	Fail
Static Coef vs Speed	Pass	Fail	Pass
Energy Limit	Pass	Pass	Fail
Total Wear	0.03	0.029	0.02
Friction Retention			
	Pass	N/A	Pass

3.3 HIGH TEMPERATURE 2-CYCLE DIESEL TESTING

As a follow on to work completed during SCPL development Part 2, additional 2-cycle diesel compatibility testing was conducted to assess the SCPL's ability to protect this unique engine architecture, this time under high temperature desert type operation. Funding was originally provided to evaluate both revised SCPL candidates only, but upon preparation of testing, a change in the ring pack design of parts procured through Detroit Diesel was noted. TFLRF identified the change and brought it to the attention of TARDEC to discuss testing impact. The concern was that the change in the oil control rings had the potential to affect high temperature testing results, and obscure any comparison to previous work completed during Part 2. After discussion, three options were identified:

- Option 1 Run both (2) funded tests as written in the SOW (both revised SCPL candidates) with new oil rings all at high temperature.
- Option 2 Run one revised candidate with new style oil ring, and the second revised candidate with old style oil rings all at high temperature.
- Option 3 Run one (generic) SCPL and one baseline 15W-40 evaluation, both with new style oil rings, both at high temp.

Option three was selected as the best course for testing as it better balanced information that was most beneficial to the SCPL program, and helped identify any shifts between the new style parts versus results achieved during testing conducted in Part 2 using the old style parts. The SOW was modified and progress continued. The following sections review the construction of the engine test stand and description of test cycle covered in Part 2, and discusses the results attained from the high temperature evaluations using MIL-PRF-2104H 15W40 and the SCPL.

3.3.1 Test Stand Construction.

The same test installation used in SCPL development Part 2 was utilized for the high temperature compatibility evaluations. Testing included the current MIL-PRF-2104H 15W40 OE/HDO to establish a known baseline condition (consistent with actual current military applications), followed by testing of a single revised SCPL candidate to determine general SCPL high temperature compatibility. Due to test timing issues, neither of the final candidates (LO306520

or LO292039) were available to conduct engine testing, so the revised candidate B from SCPL development Part 2 (LO271510,LO274845) was used for the SCPL test.



Figure 1. Detroit Diesel 6V53T Test Cell Installation

The DDC 6V53T used in these evaluations was in its military configuration, built according to the specifications for the M113A3 Armored Personnel Carrier (APC). As tested it produced approximately 235hp and 560ft-lb of torque (using JP-8). A picture of the DDC 6V53T engine installation can be seen in Figure 1. The engine was mounted in an engine dynamometer test cell and equipped with all necessary equipment needed to operate the engine, with the exception of accessory equipment that would be installed and utilized in a vehicle (i.e., alternator, cooling fan, etc.). The bulleted list below outlines the basic test stand configuration utilized:

- The engine used SwRI developed PRISM data acquisition software to monitor and control engine operation throughout testing. Monitored engine parameters included all critical temperatures, pressures, and flow rates, as well as engine speed and output power/torque.
- Engine loading was provided by a 300hp Midwest 1519 wet-gap eddy current engine dynamometer and an electro mechanical throttle actuation system. The dynamometer

controlled overall engine speed, while the throttle actuation system adjusted the fuel rack position to manipulate engine load.

- A liquid-liquid heat exchanger was used to regulate the engine water jacket temperature with building supplied process water.
- The oil filter housing and oil cooler were removed from the engine and their inlets and outlets were plugged. The original oil filter housing was then remotely mounted to the test stand and connected via steel braided Teflon lines back to the engines oil supply port. A remote liquid-liquid heat exchanger was then added in series with the oil filter, and plumbing was then returned back to the engine at the left lower front cover. These modifications were completed to allow independent control of the engine oil sump temperature by removing interaction between the oil cooler and the engine water jacket. The changes also allowed easier access to the engine air box covers for bore inspections. Changes made to the engine had no impact on its internal oiling/lubrication.
- Fuel was supplied from bulk storage tanks to an engine "day-tank" that served as a common location for the engine supply and return lines. The engine's fuel consumption was monitored by a Mircomotion coriolis flow meter by measuring the make-up fuel required to maintain the day tank at a constant volume.
- Inlet fuel temperature was controlled by a heater control loop to maintain steady inlet temperature throughout testing. The control loop maintained a reservoir of a glycol-water solution at a specified temperature, and was then used as a heat source to elevate the temperature of incoming fuel to the desired set point through a liquid-liquid heat exchanger.
- Engine inlet air was drawn past chilled (process water) water cores to lower intake air temperatures prior to the engine air filtering system. Air was filtered through an OEM-style air filter housing with an adjusting valve to vary intake air restriction prior to the turbocharger inlet.
- Engine exhaust gases were ducted into an exhaust ventilation system integrated into the engine laboratory building. Back-pressure was controlled via a butterfly valve located in

the exhaust stack between the engine and the buildings common exhaust header before exiting the test cell.

- Engine blow-by gases were ducted into a drum to capture any entrained oil, and then vented through a vortex shedding flow meter to monitor engine blow-by rates. Waste gasses were then ducted to the buildings exhaust ventilation system at ambient pressure (to not effect crankcase pressure) to expel blow-by gasses from the test cell.
- Engine coolant was a 60/40 blend of ethylene glycol and de-ionized water.
- Fuel used during testing was JP-8 blended at location from commercially available Jet-A with a double max-treat rate of lubricity enhancer DCI-4A.

3.3.2 Test Cycle Operation

Consistent with testing conducted during SCPL development Part 2, the 6V53T engine was evaluated based on procedures outlined in Federal Test Method (FTM) Standard No. 791C, Method 355, Performance of Engine Lubricating Oils in a Two-Cycle Diesel Engine Under Cyclic, Turbo-Supercharged Conditions [9]. Modifications were again made to selected operating conditions, as the engine output and torque characteristics of the current 6V53T model have changed since the original establishment of the test method. Despite this, the general operation of the engine test cycle from the FTM remained unchanged. The test cycle included cyclic modes of 0.5 hours at idle, 2 hours at max power, 0.5 hours at idle, and 2 hours at max torque. This was repeated 4 times daily for a total of 20 hours runtime, accumulating 240 hours over a 12 day period. Daily operation was followed by a 4 hour engine off soak prior to the next day's running to allow thermal cycling of the lubricant. The cycle called out in this FTM was based off of work reported under CRC Report No. 406, Development of Military Fuel/Lubricant/Engine Compatibility Test [10]. The test cycle outlined was originally correlated to 4,000 miles of actual military tracked vehicle proving ground operation.

At the start of the test and every 60 hours of operation an engine airbox inspection was completed to assess the condition of the piston skirts, ring faces, and cylinder liners. This provides quasi-real time monitoring of the oils performance in protecting critical engine components throughout the test duration. Bore inspections were completed by passing a

bortescope through the engines airbox covers and liner intake ports while each piston was at bottom dead center (BDC), and visually rating the condition of the liner surface. The original FTM stated that if any single liner experienced greater than 30% scuffing while other liners remained in good condition, a single cylinder kit could be replaced and testing continued. This could only be completed once during the test cycle, otherwise testing was to be terminated. If at any time multiple liners experienced severe scuffing, and were deemed progressive in nature, the test was to be terminated. Severe scuffing could potentially lead to failure of the liner to block Orings and cause catastrophic engine damage.

At all times engine oil sump and coolant temperatures were controlled to ensure test consistency and severity for each lubricant tested. In general, no engine oil changes were made during the test cycle, and testing was continued until the completed 240 hours, or upon the occurrence of major oil degradation or liner scuffing. Some variation to this procedure was done during the SCPL evaluation and is discussed below. Table 11 below shows the overall operation conditions used for the 6V53T testing.

Table 11. DDC 6V53T Operating Conditions

Parameter	Max Power	Max Torque
Engine Speed [RPM]	2800 +/- 25	1600 +/- 25
Water Jacket Out [°F]	170 +/- 5	170 +/- 5
Oil Sump [°F]	260+/- 5	260 +/- 5

Used engine oil samples were collected every 20 hours for analysis to assess the condition of the lubricant and to determine test termination if necessary. Extreme liner scuffing can be identified by sharp changes in iron accumulation rates during testing. Analytical tests conducted on daily samples are outlined below in Table 12. The engine oil level was replenished daily after sampling, and all engine oil additions and samples were weighed throughout testing to track engine oil consumption.

Table 12. DDC 6V53T Used Oil Analysis Tests

Test Method	Description
ASTM D445	Kinematic Viscosity @ 100 °C
ASTM D4739	Total Base Number
ASTM D664	Total Acid Number
ASTM D5185	Wear Metals by ICP

3.3.3 Engine Metrology and Ratings

Each lubricant was evaluated after completing an "in-frame" rebuild of the 6V53T engine. The primary item of focus for 2-cycle compatibility is the engine's liner and piston, commonly referred to as the cylinder kit. Each cylinder kit underwent a metrology process before testing to fully document its starting condition. The pre-test metrology process included measurements of the cylinder kit, as well as other critical engine parameters to ensure integrity of the engine, including:

- Piston ring clearances (end gap & side clearance, all)
- Top, second, and third ring radial thickness
- Piston ring mass, all
- Upper oil control ring and expander tension (reference only measurement)
- Piston skirt diameter
- Liner bore (free standing, T/AT & F/B) at:
 - 13 mm from top
 - 25 mm above ports
 - 25 mm below ports
 - 13mm from bottom
- Liner surface finish (single pass above ports)
- Engine block bore (top & bottom, T/AT & F/B)
- Slipper bushing tin plate thickness (reference only measurement)
- Slipper bushing mass
- Connecting rod bearing mass
- Connecting rod bearing to crank journal clearance
- Exhaust valve recession
- Crankshaft endplay

After the inspection and metrology process was completed, the engine was reassembled according to factory specifications. Any parts requiring lubrication during assembly were lubricated using an additive free lubricant in order to remove any bias on subsequent lubricant test data. At the completion of each test, the engine was disassembled and inspected. This allowed for documentation of wear experienced over the test duration, and assessment of the piston skirt, rings, and liner condition. Similar to pretest metrology, post-test metrology procedures included measurements of:

- Piston ring clearances (end gap only, all)
- Top, second, and third ring radial thickness
- Piston ring mass, all
- Piston skirt diameter
- Liner bore (free standing, T/AT & F/B) at:
 - 13mm from top
 - 25mm above ports
 - 25mm below ports
 - 13mm from bottom
- Slipper bushing mass
- Connecting rod bearing mass

Internal component ratings were also conducted to quantify the amount and location of carbonaceous and lacquer type deposits present, and wear experienced during testing. This process was completed following industry standardized ASTM ratings procedures [11]. Ratings included piston deposits, ring face distress, piston skirt and liner ratings, intake port plugging, and slipper bushing exposed copper.

3.3.4 MIL-PRF-2104H High Temperature Results

The MIL-PRF-2104H high temperature evaluation successfully completed the full 240hr test schedule. At approximately 100hrs into testing, a low power condition on the engine was observed. The used oil analysis, bore inspection, and engine blow by data did not suggest a mechanical engine issue with the engine itself, so investigation into the engine subsystems was completed. Ultimately the fuel transfer pump relief piston was found faulty, resulting in low fuel supply pressure to the injectors and the reduced power. In addition three of the six injectors demonstrated poor spray performance and chatter when checked on a calibration bench. A new fuel transfer pump, replacement injector, and two new injector tips were installed, and testing continued. After repairs the engine output was verified consistent with its original output.

Bore inspections during the 2104H test at the 0 and 60hrs showed that all liners were void of any scuffing present. At 120hrs liner 2R showed approximately 7% scuffing, and at 180hrs 10% scuffing. All others locations showed no evidence of scuffing. Used oil analysis past the last airbox inspection at 180hrs showed pronounced jumps in iron concentration (220hr and 240hr samples specifically). This suggested that additional scuffing was occurring in the engine, and was most likely attributed to further scuffing of cylinder 2R. During the teardown and ratings at the end of testing, liner 2R was found to be 90% scuffed. All other liners ranged between zero to 2% scuffing. Although not a perfect result, the test did demonstrate that the 2104H did protect the 2-cycle engine from failure despite the maintained high lubricant temperatures. Per the original FTM method the single scuffed liner result was removed from the reporting as an outlier since all other locations showed little distress. After reviewing all post test metrology and ratings results with the 2R results dropped, it was found that the 2104H high temperature test closely tracked the results observed during the ambient temperature evaluations conducted during SCPL development Part 2, with the exception of the top compression ring condition. All top compression rings in high temperature test were found to be collapsed between 25-50%. This means the piston ring has lost some of its tension compared to its pre-test condition, and its overall at rest OD has decreased. The cause for this was not readily identified. In general, ring collapse occurs when pressure differentials occur between the inner and outer diameter of the ring during operation, and is a complex result of radial ring pressures and interactions from combustion pressure and temperature. The full test report is presented in Appendix B.

3.3.5 Revised SCPL Candidate Results

Unlike the 2104H evaluations, the revised SCPL high temperature evaluation in the 6V53T did not complete the 240hr evaluation as a result of uncontrolled scuffing during operation past 60hrs of testing. As previously mentioned, revised candidate LO274845 from SCPL development Part 2 was initially tested in the high temperature evaluation due to availability at the time of testing. After initiation testing progressed smoothly to the first bore inspection at 60hrs. At that time no cylinder showed any evidence of scuffing. However after the 60hr mark, iron accumulation concentrations in 80, 100, and 120hr used oil samples began showing exponential growth. This was immediately suspected as an indicator of scuffing, and at the 120hr bore inspection liner 2R was found to be 80% scuffed (see Figure 2), and 2L and 1R showed 14% and 15% respectively. Based on the magnitude of scuffing present and the procedures of the FTM, cylinder kit 2R was removed from the engine and replaced with an unmeasured cylinder kit and testing was continued. The intentions were that this single liner result would be dropped as an outlier if testing continued successfully. However at 160hrs, an unscheduled bore inspection was conducted due to lagging used oil analysis results, and cylinder 1R was found to be 99% scuffed (Figure 3). Once the used oil analysis caught up to real time, results showed continued exponential iron accumulation in the oil since the occurrence of the first scuffing event. At this time testing was halted as it appeared that the SCPL was not able to provide adequate protection.

Figure 2. SCPL High Temp 6V53T Evaluation, Liner 2R Removed at 120hrs

Figure 3. SCPL High Temp 6V53T Evaluation, Liner 1R Removed at 160hrs

UNCLASSIFIED

Discussions were held with TARDEC regarding the test progress. Of particular interest was the higher NOACK volatility of candidate LO274845. It was desired to determine if the scuffing tendency of the SCPL was attributed to the high NOACK, or if the general low viscosity profile combined with the elevated operating temperatures was the primary culprit. Since the test was not complete and funding was still proficient, it was determined that later lower NOACK version of the same candidate SCPL was to be attempted in the remaining test hours to see if any changes in performance could be observed.

At 160hrs all the right hand side cylinder kits were replaced with new measured kits, and testing was continued with a new oil charge of the now available revised candidate LO292039 (NOACK of 12.2 wt% vs LO274845 NOACK of 14.3%). The engine was operated for an additional 40hrs accumulating a total of 200hrs of high temperature operation when the iron accumulation rates were again observed to be rapidly climbing. A bore inspection at 200hrs confirmed that cylinder 2L and 3L were now 40% and 85% scuffed respectively, and heavy scratching (a precursor to scuffing) was noted on the newly installed right hand cylinder kits. Testing at this time was terminated and the engine was disassembled for final inspection.

Upon removal, the right hand side pistons with only 40 hours of operation all showed heavy scuffing on the thrust side skirts (see Figure 4, Figure 5, and Figure 6). This suggested that liner scuffing of the right hand side was imminent, and the lower NOACK of the revised SCPL candidate did not provide improved protection. With the multiple parts changes that occurred during testing, only minimal post test ratings and metrology was completed (completed only on parts from the left bank that operated the full 200hrs on test). The resulting test report (partial) of the high temperature SCPL test is presented in Appendix C.

Figure 4. SCPL High Temp 6V53T Evaluation, 160hr 1R Replaced Piston Removed at 200hrs

Figure 5. SCPL High Temp 6V53T Evaluation, 160hr 2R Replaced Piston Removed at 200hrs

UNCLASSIFIED

Figure 6. SCPL High Temp 6V53T Evaluation, 160hr 3R Replaced Piston Removed at 200hrs

3.4 STANDARDIZED MACK T-12 DURABILITY

The final testing conducted on the revised SCPL candidates was the industry standardized Mack T12 tests (ASTM D7422), which evaluated the wear performance of lubricants in turbocharged intercooled diesel engine equipped with exhaust gas recirculation (EGR) and operating on ultra low sulfur diesel (ULSD). Although the use of EGR and ULSD are not readily applicable to military applications, this test is an industry accepted wear test for CJ-4 qualification, and would provide insight on how the SCPL candidates which have been uniquely formulated for military applications would perform in current industry standardized testing. The Mack T-12 test was conducted for a total of 300hrs, with the first 100hrs operated at rated speed and power to generate specific soot levels in the oil, and the final 200hrs being operated at peak torque while over-fueling to maximize wear rates on piston rings an liners. The Mack T-12 test by procedure utilizes an oil adder system, in which the fixed total quantity of oil allowed for the test cycle is loaded into the engine and adder system at the start of testing. Thus oil consumption rates during

the test be readily monitored and compared. The evaluated parameters of the test included the piston ring wear, cylinder liner wear, lead bearing corrosion, along with lubricant consumption and oxidation.

Both revised candidates LO292039 and LO306520 completed the full 300hr Mack T-12 test schedule, however results were varied. Results in industry are based on the ending "total Mack merits", which numerically rate the liner, top ring, oil consumption, and lead concentration increases for the test. A passing lubricant needs to generate 1000 merits to be qualified for the CJ-4 specification, and 1300 merits for the Mack EO-O premium designation. The results for each revised candidate is as follows:

- LO292039 938.1 merits
- LO306520 -1266.2 merits

Based on these results neither of the SCPL candidates "passed" the minimum requirements for CJ-4 approval. However upon closer inspection of the data, several key points can be derived. Full T-12 test reports for both candidates can be seen in Appendix D.

3.4.1 SCPL Candidate LO292039

Although not a passing result, the 938.1 merit rating is relatively good for the SCPL. Although short of the current CJ-4 requirements, this result does exceed previous category CI-4+ requirements. Recent changes to industry wide correction factors negatively affected the merit rating of the SCPL for the CJ-4 perspective, but overall top ring weight loss was observed to be good.

At the time of testing there was an industry wide variation in top ring weight loss and cylinder liner wear being observed in testing. Both of these issues can significantly impact overall oil consumption during testing, which in turn increases the severity of the testing as higher levels of wear metals accumulate in the oil compared to testing with lower consumption. For LO292039 the oil volume in the external oil adder system used was fully consumed by approximately

260hrs into testing, so the test was considered fairly severe based on the overall reduced oil volume maintained during the test.

Based on the actual results achieved, the high oil consumption observed, and known industry variation, it is plausible that if this oil where re-tested it could achieve the CJ-4 requirements.

3.4.2 SCPL Candidate LO306520

The LO306520 result of -1266.2 merits was unexpected. Past military application testing has shown the performance of both SCPL candidates to be very similar, so the large variance in T-12 results was initially surprising.

From reviewing the data the primary cause of the poor performance of this candidate was most strongly linked to the oil consumption rate that occurred during the test. Similar to that observed during testing of LO292039, the oil volume in the external oil adder during LO306520's evaluation test was also fully consumed, but at an earlier 219hrs of testing. As a result the final 81hrs of testing was conducted on the reduced oil volume increasing its test severity compared to that observed during the LO292039 evaluation. As previously discussed high oil consumption negatively impacts ring and liner wear, and for LO306520 the liner wear result was very poor. This directly drove down the resulting merit ratings for the test.

This again brings into question the current industry variation issues with top ring weight loss and liner wear as a result of the ring pack stability. It is unknown if the LO306520 evaluation may have been effected by these issues, and without additional testing, no further conclusions from the Mack T-12 test can be derived.

At this time it is recommended that all T-12 results should only be taken as cautionary result, with more regard being put on other military specific engine testing conducted with the SCPL candidates to determine their engine wear protection properties.

4.0 CONCLUSIONS

In conclusion we can see that the latest revised SCPL candidates still have areas where they can be improved upon for industry standardized testing. All testing in military applications apart from high temperature two cycle testing has shown positive results. The following conclusions can be made from these final test areas reported:

- Bench top analytical testing showed that both revised candidates exceed industry standards for high temperature bearing corrosion, foaming resistance, and elastomer compatibility.
- SCPL candidates still show borderline failures in some of the standardized transmission testing, but as previously analyzed, the failures that are occurring would not be expected to cause significant compatibility issues in military equipment due to the minimal excursions past limit lines developed in testing. All applied transmission testing conducted in the RAM-D Stryker testing and vehicles included in the SCPL field demonstrations has demonstrated that transmission function remains acceptable while using the SCPL candidates.
- Use of the SCPL in high temperature two cycle diesel engines is not advisable. The
 critical piston/liner architecture used in the two cycle diesel engines does not tolerate the
 combined low viscosity and increased operating temperatures, and results in uncontrolled
 liner scuffing. During more moderate operating conditions, as shown in the initial SCPL
 two cycle compatibility testing during SCPL Development Part 2, the SCPL can provide
 adequate two cycle protection.
- Results from the Mack T-12 test were varied. Neither SCPL candidate met the CJ-4
 accreditation level, but test results are questionable based on industry wide consistency
 issues within the test.

5.0 REFERENCES

- 1. Warden, R.W., Frame, E.A., Brandt, A.C., "SAE J1321 Testing Using M1083A1 FMTVS," Interim Report TFLRF No. 404, March 2010, ADA528430.
- 2. Warden, R.W, et. al. "Fuel Efficiency Effects of Lubricants in Military Vehicles," SAE Technical Paper 2010-01-280, 2010.
- 3. CTC REPORT "Single Common Powertrain Lubricant Evaluation", Final Report (Draft), February 26, 2010, by Concurrent Technologies Corporation, for SwRI Subcontract No. 899059X.
- 4. Brandt, A.C., et. al., "Single Common Powertrain Lubricant Development," Interim Report TFLRF No. 418, January 2012.
- 5. Brandt, A.C., et. al., "Single Common Powertrain Lubricant Development Part 2," Draft Interim Report TFLRF No. 442, May 2014.
- 6. Brandt, A.C., Frame, E.A., Alvarez, R.A., "Feasibility of using Full Synthetic Low Viscosity Engine Oil at High Ambient Temperatures in U.S. Army Engines", Interim Report TFLRF No. 415, June 2011, ADA560574.
- 7. Brandt, A.C., et. al. "Feasibility of Using Full Synthetic Low Viscosity Engine Oil at High Ambient Temperatures in Military Vehicles," SAE Technical Paper 2010-01-2176, 2010
- 8. Brandt, A.C., Frame, E.A., "Transmission Bench Testing for Single Common Powertrain Lubricant Candidates", Draft Interim Report TFLRF No. 417, January 2012.
- 9. "Performance of Engine Lubricating Oils in a Two-Cycle Diesel Engine Under Cyclic, Turbo-Supercharged Conditions" Federal Test Method STD 791C, Method 355, September 1986.
- Development of Military Fuel/Lubricant/Engine Compatibility Test, CRC Report 406,
 January 1967.
- 11. ASTM Deposit Rating Manual 20 (Formerly CRC Manual 20), ASTM International, West Conshohocken, PA, www.astm.org.

6.0 TFLRF SCPL REPORT BIBLIOGRAPHY

The following section lists all reports completed by TFLRF in support of the SCPL program since its inception. Some of the following were referenced in the preceding report, but the below listing outlines all reports related to the SCPL completed by TFLRF from approximately 2008-2015.

- 1. Brandt, A.C., et. al., "SAE J1321 Testing Using M1083A1 FMTV's," Interim Report TFLRF No. 404, March 2010
- 2. Wendel, G., "Feasibility of a Single Common Powertrain Lubricant: Hydraulic System Investigations at Low Temperatures" Interim Report TFLRF No. 411, January 2011
- 3. Brandt, A.C., et. al., "Feasibility of Using Full Synthetic Low Viscosity Engine Oil at High/Ambient Temperatures in U.S. Army Engines," Interim Report TFLRF No. 413, June 2011
- 4. Brandt, A.C., et. al., "Transmission Bench Testing for Single Common Powertrain Lubricant Development," Interim Report TFLRF No. 417
- 5. Brandt, A.C., et. al., "Single Common Powertrain Lubricant Development," Interim Report TFLRF No. 418, January 2012
- 6. Brandt, A.C., et. al., "Single Common Powertrain Lubricant (SCPL) Development Part 2," Interim Report TFLRF No. 442, May 2014
- 7. Frame, E. A., et. al., "Axle Lubricant Efficiency," Interim Report TFLRF No. 444, May 2014
- 8. Brandt, A.C., et. al., "Teardown and Inspection of the Cummins VTA-903 Evaluated using the Single Common Powertrain Lubricant," Interim Report TFLRF No. 450, August 2013
- 9. Brandt, A.C., et. al., "Inspection of Stryker Engines Evaluated using SCPL in a 20k Mile RAM-D Test," Interim Report TFLRF No. 452, April 2014

- 10. Brandt, A.C., et. al., "U.S. Army Field Demonstration of the Single Common Powertrain Lubricant (SCPL)," Draft Interim Report TFLRF No. 454, February 2015
- 11. Brandt, A.C., et. al., "Inspection of Stryker Transmissions Evaluated using SCPL in a 20k Mile RAM-D Test," Interim Report TFLRF No. 457, August 2014
- 12. Brandt, A.C., et. al., "Single Common Powertrain Lubricant (SCPL) Development Part 3," Interim Report TFLRF No. 462, February 2015
- 13. Brandt, A.C., et. al., "Evaluation of the Single Common Power Train Lubricant (SCPL) in the 1050HP AVDS-1790-8CR Engine," Interim Report TFLRF No. 463, February 2015

APPENDIX A. Transmission Bench Test Reports

SOUTHWEST RESEARCH INSTITUTE® San Antonio, Texas

Fuels and Lubricants Research Division

This page has been AMENDED.

Report on

ALLISON TRANSMISSION FLUID TYPE C-4 GRAPHITE CLUTCH FRICTION TEST

Conducted For

ARMY LAB

Oil Code: LO292039

Test Number: C4-9-1449

January 30, 2014

Submitted by:

Matthew Jackson Manager

Specialty & Driveline Fluids Evaluation

The results of this report relate only to the fluid tested.

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute®.

C-4 Heavy Duty Transmission

Fluid Specification

Allison Transmission Division

VIII. Graphite Clutch Friction Test

Test Laboratory: SWRI
Test Number: C4-9-1449
Friction Plate Batch: LOT 45
Steel Plate Batch: 10/9/2008

Lab Fluid Code: LO-292039
Sponsor Fluid Code: LO292039
Completion Date: 01/30/14

Clutch Wear Data

(units in mm)

	Maximum	Average
Steel Plates	0.0000	0.0000
Clutch Plate	0.0900	0.0837

	Before	After	
Pack Clearance	0.4572	0.5588	_

Reference Tests

Test Number	Test Date	Test Fluid
C4-0-1428	10/16/13	MIL-PRF-2104H
C4-0-1429	10/18/13	MIL-PRF-2104H
C4-0-1440	01/04/14	MIL-PRF-2104H

	New	EOT
Viscosity at 40°C, cSt	45.21	38.21
Viscosity at 100°C, cSt	8.48	7.27
Iron Content, ppm	1	144

D5185	New Fluid (ppm)
Ва	<1
В	15
Са	933
Mg	1323
Р	1138
Si	5
Na	<5
Zn	1236

Name: Matthew Jackson

Title: Manager

Signature:

A-3 Page 1 of 54

ALLISON C-4 GRAPHITE FRICTION TEST SUMMARY

(Torque in Ft-Lbs)

Sponsor Fluid Code: LO292039 Test Number: C4-9-1449

Lab Fluid Code: **LO-292039** Fric. Plate Batch: **LOT 45**

Completion Date: 1/30/2014 Steel Plate Batch: 10/9/2008

PHASE A

	SLIP	TORQUE	TORQUE	TORQUE	STATIC PEAK	LOW SPEED	LOWSPEED
CYCLE	TIME	(MIDPOINT)	STATIC PEAK	(.2 Second)	- 0.2 TORQUE	STATIC PEAK	STATIC TORQUE
500	1.12	53	82	43	39	112	90
1000	1.22	49	79	36	43	95	81

PHASE B

	SLIP	TORQUE	TORQUE	TORQUE	STATIC PEAK	LOW SPEED	LOWSPEED
CYCLE	TIME	(MIDPOINT)	STATIC PEAK	(0.2 Second)	- 0.2 TORQUE	STATIC PEAK	STATIC TORQUE
1500	0.71	113	158	103	55	180	166
2000	0.73	111	156	97	59	171	163
2500	0.75	109	155	91	64	185	163
3500	0.77	106	152	87	65	184	161
4000	0.77	105	151	85	66	181	158
4500	0.79	103	149	86	63	170	157
5000	0.79	103	145	86	59	177	156
5500	0.78	104	145	87	58	171	155

	Lin	nits	Results			
	Min	Max	1,500 N	5,500 N	% Change	
Slip Time Max.	N/A	N/A	0.71	0.78	9.86	
0.2 Second Dynamic Coeff.	N/A	N/A	0.097	0.082	-15.464	
Mid-Point Fric. Coeff. Min.	N/A	N/A	0.106	0.097	-8.491	
Static Friction Coeff.	N/A	N/A	0.148	0.136	-8.108	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.169	0.160	-5.325	
0.25 Second Low Speed Coeff.	N/A	N/A	0.156	0.145	-7.051	

The Allison TES-228 (C4) specification is obsolete. Batch 45 limits apply only to tests conducted for Allison TES-439 and TES-295 specifications.

SOUTHWEST RESEARCH INSTITUTE®

ALLISON C4-GRAPHITE FRICTION TEST

Candidate Fluid: LO292039

Test Number

: C4-9-1449

Completion Date: 1/30/2014

Lab Fluid Code: LO-292039 Steel Plate Batch: 10/09/2008 Fric Plate Batch : LOT 45

(all units in mm)

	(all units in mm)							
	Location					Inner	Average	Outer
Plates	of Tooth	Near Inner	Diameter	Near Outer D	Diameter	Diameter	Overall	Diameter
	(Clockwise)	Before	After	Before	After	Change	Change	Change
			FRIC	CTION MATERIAL				
	Top	2.2130	2.1260	2.2100	2.1200	0.0870		0.0900
2	120	2.2140	2.1370	2.2160	2.1270	0.0770		0.0890
	240	2.2070	2.1290	2.2030	2.1220	0.0780		0.0810
	Average					0.0807	0.0837	0.0867
			STE	EL SEPARATORS				
	Тор	1.7510	1.7510	1.7510	1.7510	0.0000		0.0000
1	120	1.7530	1.7530	1.7530	1.7530	0.0000		0.0000
	240	1.7520	1.7520	1.7520	1.7520	0.0000		0.0000
	Average					0.0000	0.0000	0.0000
	Тор	1.7600	1.7600	1.7600	1.7600	0.0000	Mark Control	0.0000
3	120	1.7570	1.7570	1.7570	1.7570	0.0000		0.0000
	240	1.7570	1.7570	1.7580	1.7580	0.0000		0.0000
	Average					0.0000	0.0000	0.0000

PLATE CONDITION AT E.O.T.:	PLATES IN GOOD CONDITION	WITH NO UNUSUAL	DISCOLORATION, MICROME	ETER

(Anything Unusual)

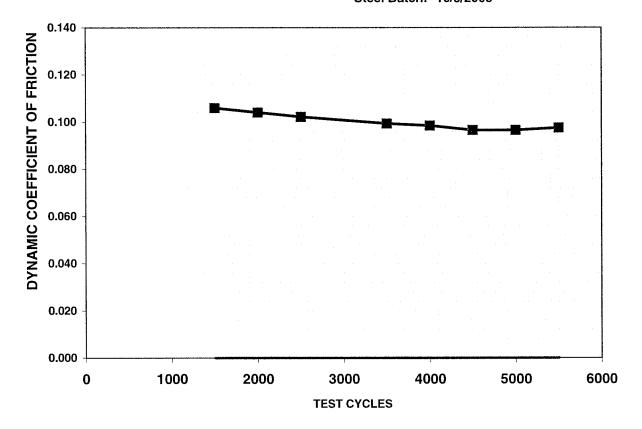
#0221190

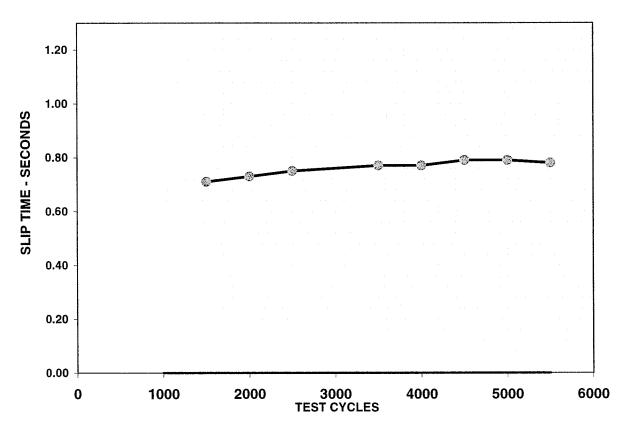
Test Date:

1/30/2014

Operator's Name:

MARK HOLMES


Pack ID#: 5134

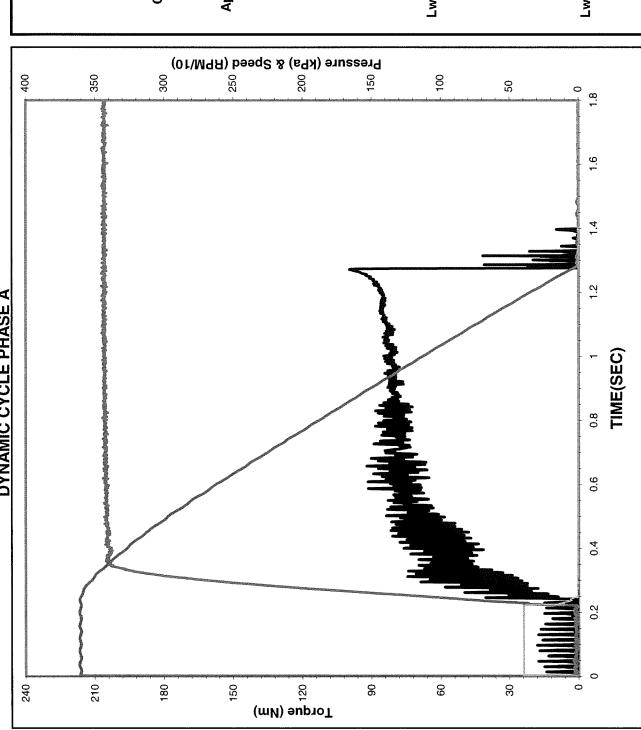

Reviewed By (Signature and Date)

ALLISON TRANSMISSION FLUID TYPE C-4 GRAPHITE FRICTION TEST

EOT Date: 1/30/2014 Test Number: C4-9-1449 Fluid Code: LO292039 Plate Batch: LOT 45 Steel Batch: 10/9/2008

AVG: Phase A = 93.0 °C. Phase B = 111.0 °C LO292039 **Cycle Number** C4-9-1449 Temperature (°C)

C4 Reports Version 1.0.8.2



DYNAMIC TRACES

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE A

Date of Test: 1/29/2014

Time of Test: 2:36:54

Fluid Code: LO292039

Test Number: C4-9-1449

65.6 °C 9 Cycle Number: Temperature:

(93.3 ± 3.0 °C) Apply Pressure:

341 kPa (345 ± 7 KPa) 0.12 Sec Apply Rate:

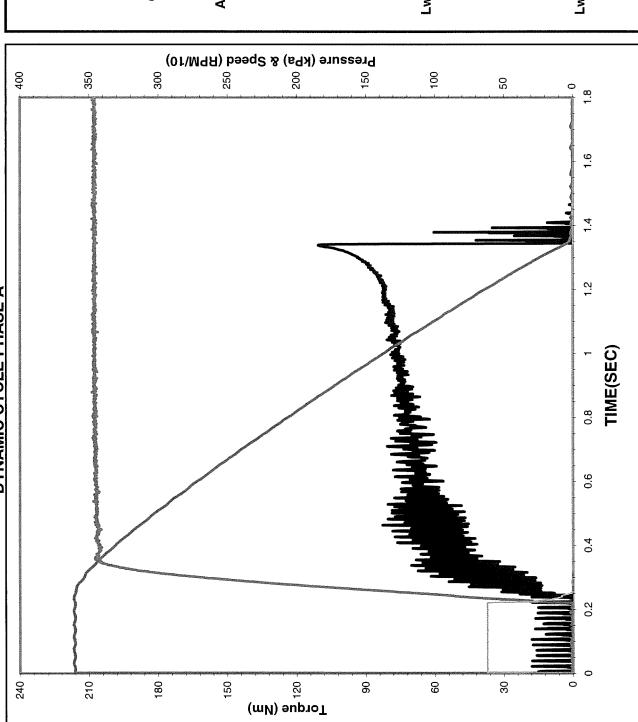
 $(0.15 \pm 0.02 \, \text{Sec})$

14.2 KJ Energy:

(14.50 ± 0.40 KJ) 1.052 Sec Engage Time:

Torque

81 N*m 64 N*m 0.2 Sec Dyn: Midpoint Dyn:


100 N*m LwSpd Dynamic:

Coefficient of Friction

0.106 0.134 0.166 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Date of Test: 1/29/2014 Time of Test: 4:39:20 Fluid Code: LO292039

Test Number: C4-9-1449

Cycle Number:

(93.3 ± 3.0 °C) 93.5 °C Temperature:

(345 ± 7 KPa) **0.13 Sec** (0.15 ± 0.02 Sec) 346 kPa Apply Pressure: Apply Rate:

14.3 KJ Energy:

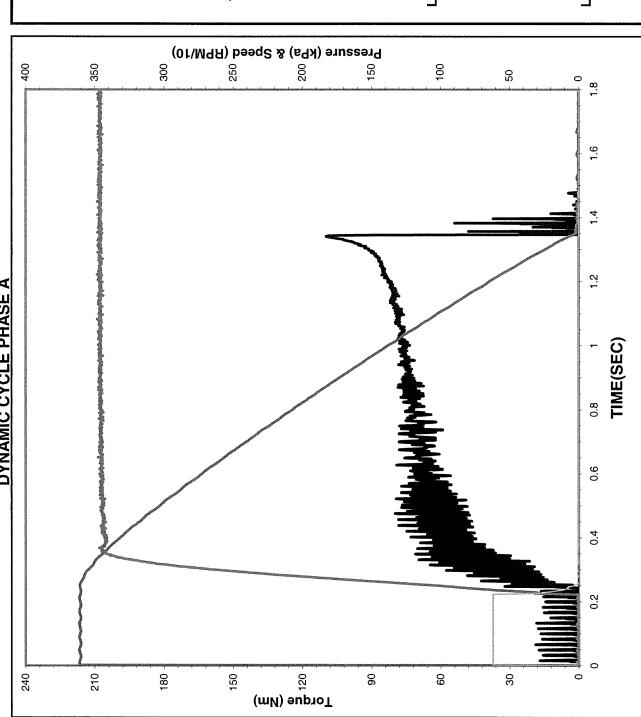
 $(14.50 \pm 0.40 \text{ KJ})$ 1.118 Sec Engage Time:

Torque

60 N*m 72 N*m 110 N*m 0.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

Coefficient of Friction


.2 Sec Dyn: Midpoint Dyn:

0.099 0.120 0.183 LwSpd Dynamic:

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE A

Date of Test: 1/29/2014

Time of Test: 4:39:35

Test Number: C4-9-1449

Fluid Code: L0292039

500 Cycle Number: **93.3 ÷ 3.0 °C** (93.3 ± 3.0 °C) Temperature:

346 kPa (345 ± 7 KPa) Apply Pressure:

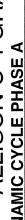
0.13 Sec Apply Rate:

(0.15 ± 0.02 Sec) 14.3 KJ Energy:

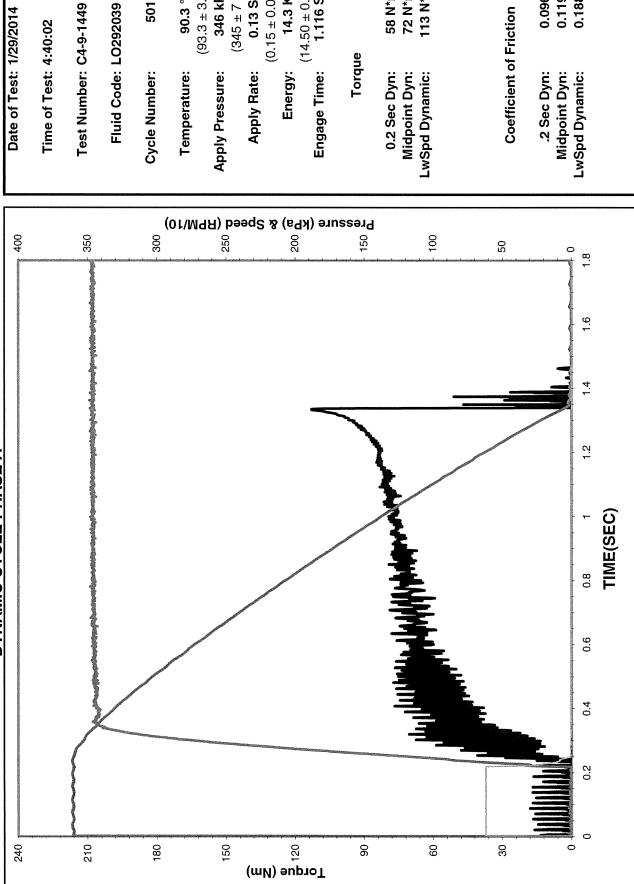
 $(14.50 \pm 0.40 \text{ KJ})$ 1.122 Sec Engage Time:

Torque

73 N*m 60 N*m 0.2 Sec Dyn: Midpoint Dyn:


110 N*m LwSpd Dynamic:

Coefficient of Friction


.2 Sec Dyn: Midpoint Dyn:

0.100 0.120 0.182 LwSpd Dynamic:

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE A

Date of Test: 1/29/2014 Time of Test: 4:40:02 Fluid Code: L0292039

501 Cycle Number:

90.3 °C Temperature:

(93.3 ± 3.0 °C) **346 kPa** Apply Pressure:

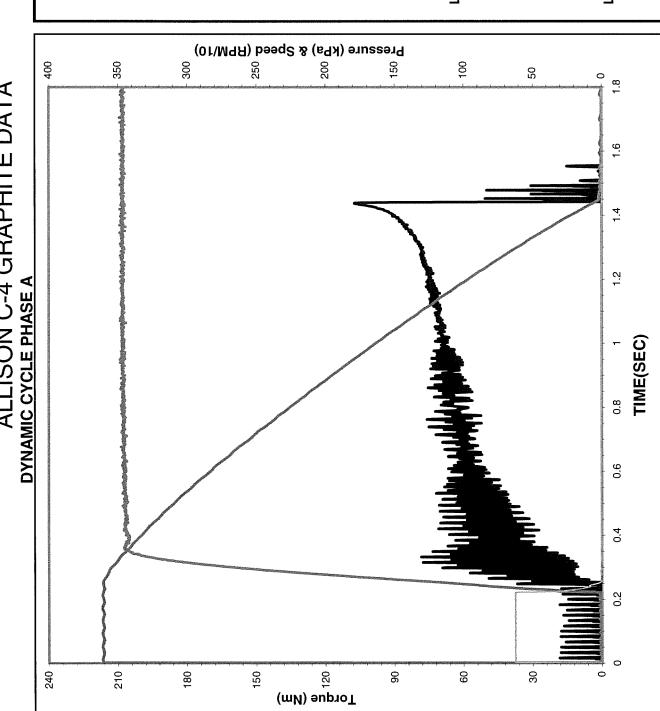
(345 ± 7 KPa) 0.13 Sec Apply Rate:

(0.15 ± 0.02 Sec) 14.3 KJ Energy:

 $(14.50 \pm 0.40 \text{ KJ})$ 1.116 Sec Engage Time:

Torque

58 N*m 72 N*m 0.2 Sec Dyn: Midpoint Dyn:


113 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.096 0.119 0.188 LwSpd Dynamic:

Date of Test: 1/29/2014 Time of Test: 6:44:17 Fluid Code: L0292039

Test Number: C4-9-1449

866 Cycle Number:

(93.3 ± 3.0 °C) 93.2 °C Temperature:

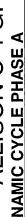
(345 ± 7 KPa) 346 kPa Apply Pressure:

0.13 Sec (0.15 ± 0.02 Sec) Apply Rate:

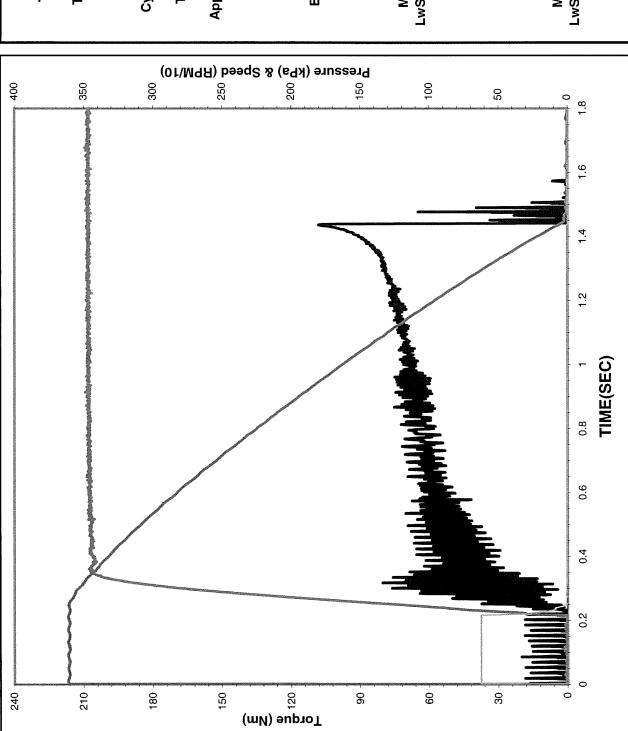
14.3 KJ Energy:

 $(14.50 \pm 0.40 \text{ KJ})$ 1.216 Sec Engage Time:

Torque


106 N*m 65 N*m 49 N*m 0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Coefficient of Friction


0.081 0.108 0.176 .2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE A

Date of Test: 1/29/2014 Time of Test: 6:44:32 Test Number: C4-9-1449 Fluid Code: LO292039

666 Cycle Number:

(93.3 ± 3.0 °C) 93.1 °C Temperature:

Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ 346 kPa (345 ± 7 KPa) 0.13 Sec Apply Rate:

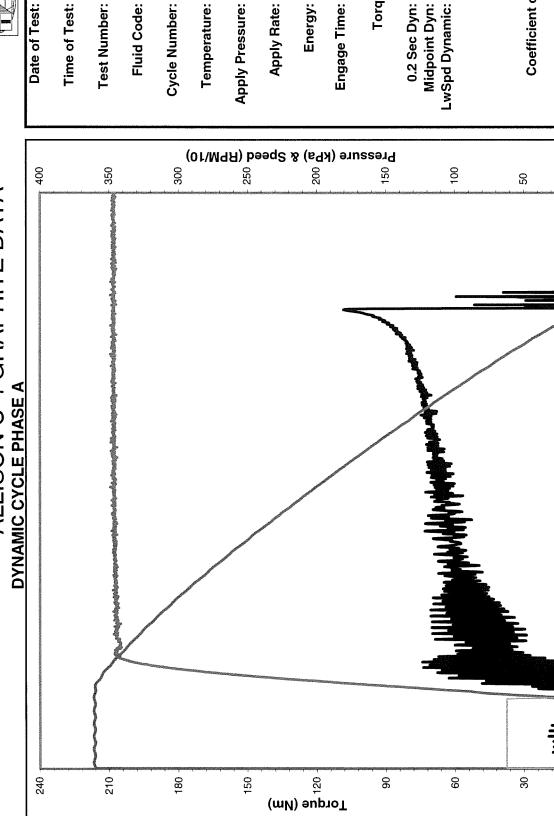
14.3 KJ Energy:

 $(14.50 \pm 0.40 \text{ KJ})$ 1.222 Sec Engage Time:

Torque

49 N*m 0.2 Sec Dyn: Midpoint Dyn:

66 N*m 108 N*m LwSpd Dynamic:


Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

0.081 0.109 0.179

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE A

Date of Test: 1/29/2014

Test Number: C4-9-1449 Time of Test: 6:44:47

Fluid Code: LO292039

1000

92.9 °C Temperature:

346 kPa (345 ± 7 KPa) 0.13 Sec $(93.3 \pm 3.0 \, ^{\circ}\text{C})$ Apply Pressure:

Apply Rate:

 $(0.15 \pm 0.02 \text{ Sec})$ 14.2 KJ Energy:

 $(14.50 \pm 0.40 \text{ KJ})$ 1.217 Sec Engage Time:

Torque

66 N*m 49 N*m 0.2 Sec Dyn: Midpoint Dyn:

108 N*m LwSpd Dynamic:

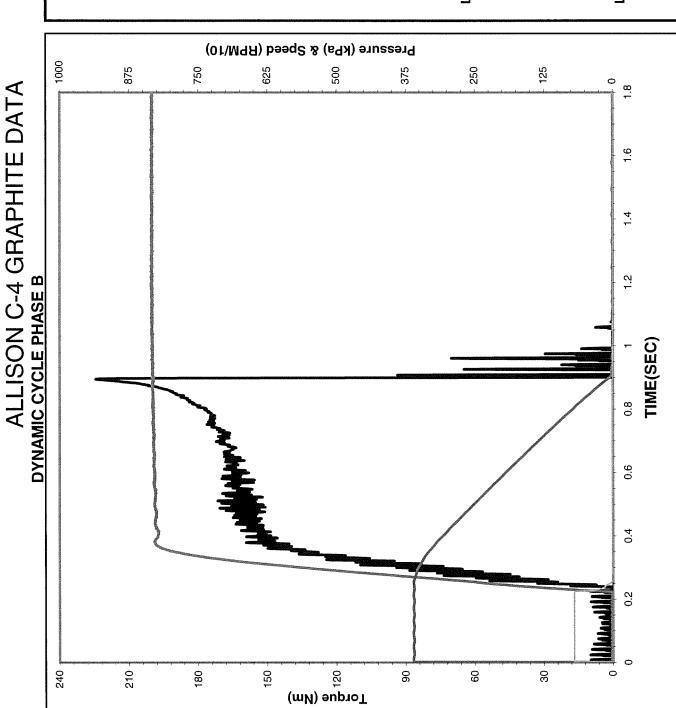
Coefficient of Friction

0.081

0.110 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

1.6

1.


1.2

9.0

9.4

TIME(SEC)

Date of Test: 1/29/2014

Time of Test: 6:56:28

Test Number: C4-9-1449

Fluid Code: LO292039

1010 Cycle Number: Temperature:

91.8 °C (112.7 ± 3.0 °C) 828 kPa

827 ± 7 KPa) **0.15 Sec** Apply Pressure: Apply Rate:

 $(0.15 \pm 0.02 \text{ Sec})$

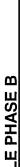
18.5 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.677 Sec**

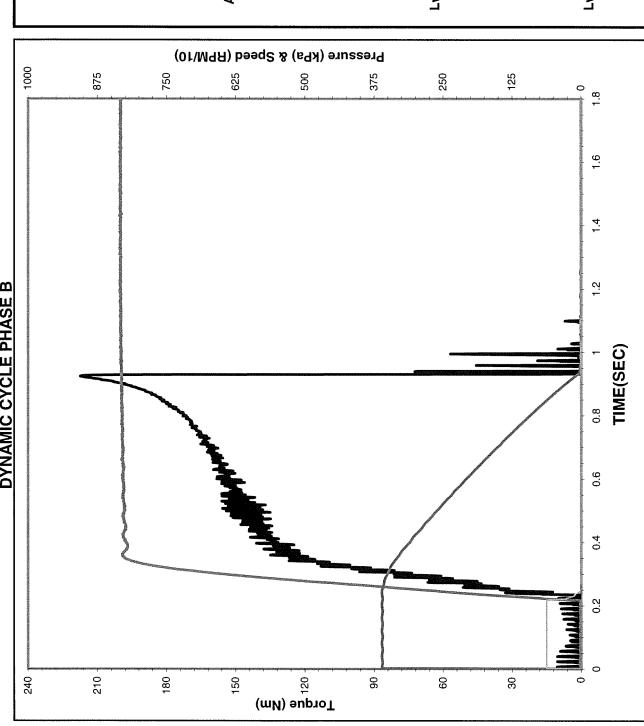
Engage Time:

Torque

157 N*m 0.2 Sec Dyn: Midpoint Dyn:


163 N*m 224 N*m LwSpd Dynamic:

Coefficient of Friction


.2 Sec Dyn: Midpoint Dyn:

0.108 0.113 0.155 LwSpd Dynamic:

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE B

Date of Test: 1/29/2014 Time of Test: 8:58:43 Fluid Code: L0292039

Test Number: C4-9-1449

1499 Cycle Number:

(112.7 ± 3.0 °C) 111.0 °C Temperature:

827 ± 7 KPa) 827 kPa Apply Pressure:

0.13 Sec Apply Rate:

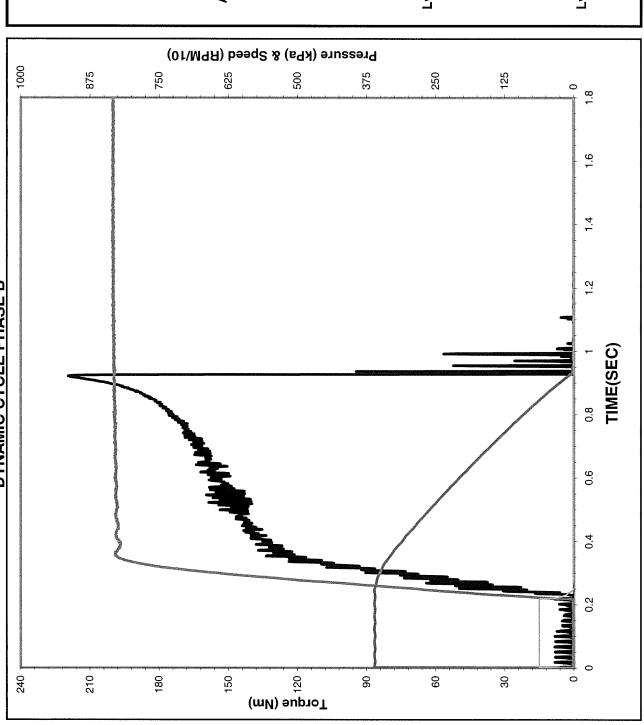
 $(0.15 \pm 0.02 \text{ Sec})$ Energy:

18.5 KJ

 $(18.71 \pm 0.40 \text{ KJ})$ **0.714 Sec** Engage Time:

Torque

139 N*m 0.2 Sec Dyn: Midpoint Dyn:


153 N*m 214 N*m LwSpd Dynamic:

Coefficient of Friction

0.096 0.105 0.148 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE B

Date of Test: 1/29/2014

Time of Test: 8:58:58

Test Number: C4-9-1449

Fluid Code: L0292039

1500 Cycle Number:

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 111.2 °C Temperature:

827 kPa Apply Pressure:

827 ± 7 KPa) 0.13 Sec Apply Rate:

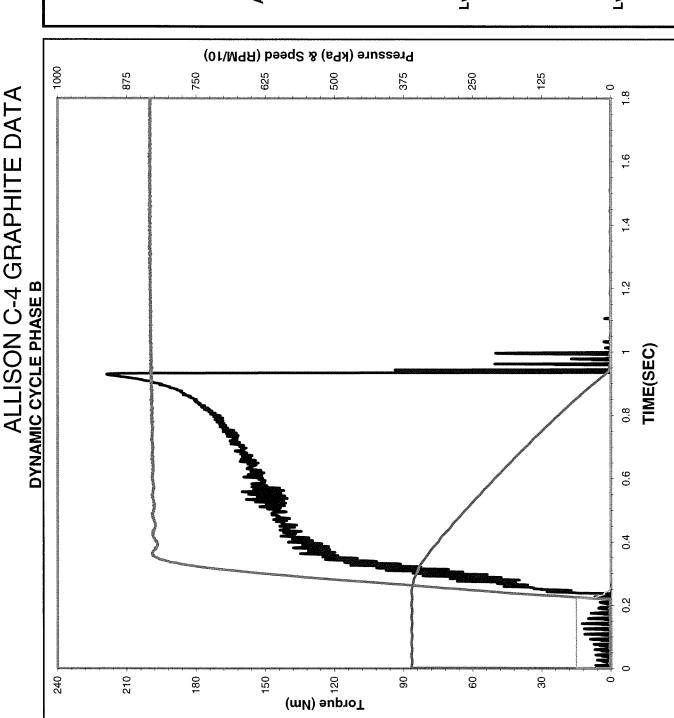
 $(0.15 \pm 0.02 \, \text{Sec})$ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.71 Sec** 18.5 KJ

Engage Time:

Torque

139 N*m 0.2 Sec Dyn: Midpoint Dyn:


214 N*m 153 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

0.096 0.106 0.148

Date of Test: 1/29/2014

Test Number: C4-9-1449 Time of Test: 8:59:25

Fluid Code: L0292039

106.9 °C Temperature:

1501

Cycle Number:

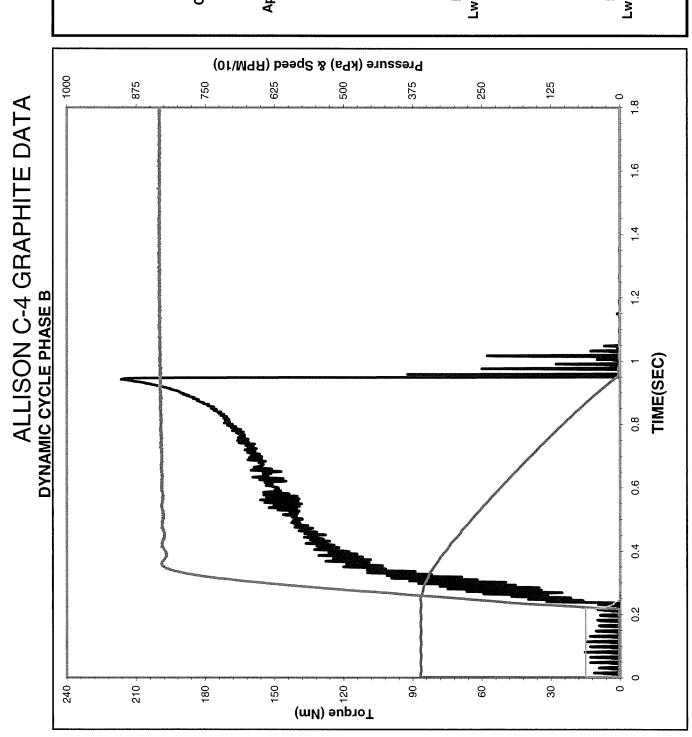
 $(112.7 \pm 3.0 \, ^{\circ}C)$ 827 kPa Apply Pressure:

827 ± 7 KPa) 0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 18.5 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.714 Sec** Engage Time:

140 N*m 0.2 Sec Dyn: Midpoint Dyn:


152 N*m 214 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn:

0.097 0.105 0.148 Midpoint Dyn: LwSpd Dynamic:

Date of Test: 1/29/2014

Test Number: C4-9-1449

Time of Test: 11:03:55

Fluid Code: L0292039

1999 Cycle Number:

(112.7 ± 3.0 °C) 110.7 °C Temperature:

827 ± 7 KPa) 827 kPa Apply Pressure:

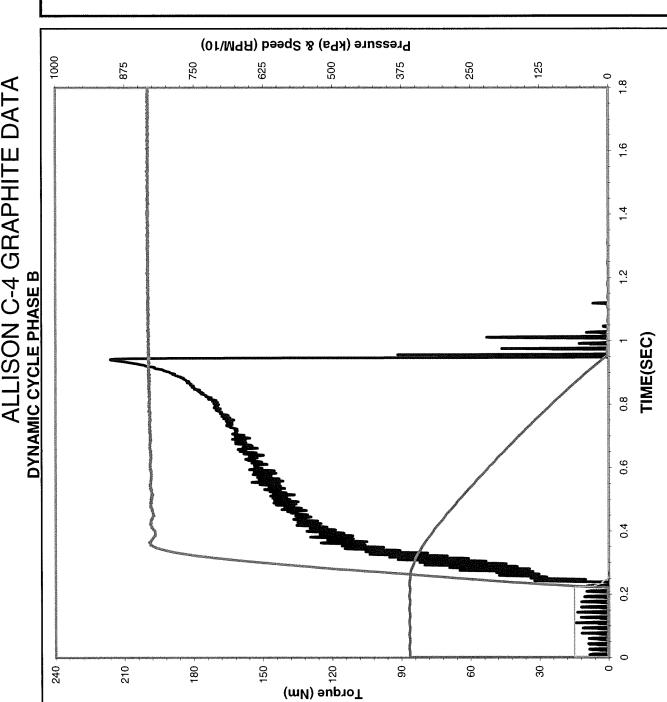
 $(0.15 \pm 0.02 \text{ Sec})$ 0.13 Sec Apply Rate:

18.5 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.732 Sec** Engage Time:

Torque

130 N*m 150 N*m 0.2 Sec Dyn: Midpoint Dyn:


210 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.090 0.104 0.145 LwSpd Dynamic:

Date of Test: 1/29/2014

Test Number: C4-9-1449

Time of Test: 11:04:10

Fluid Code: L0292039

2000 Cycle Number:

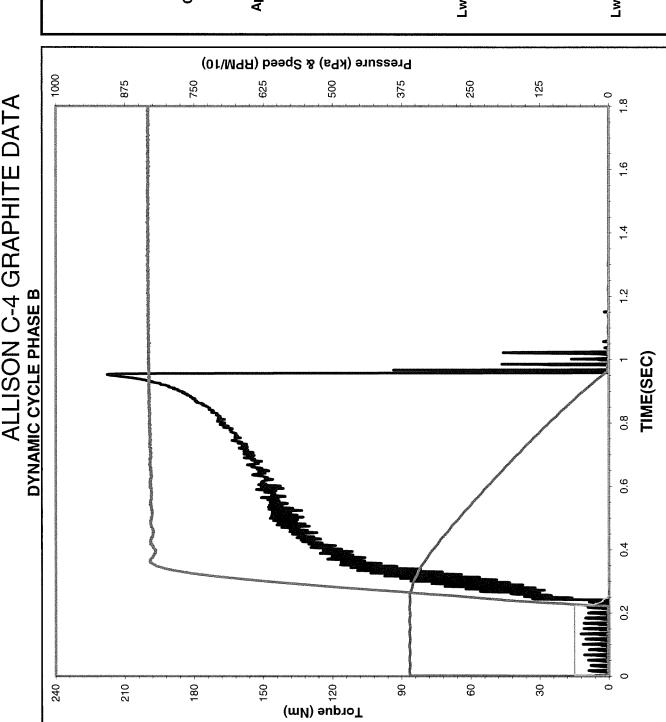
 $(112.7 \pm 3.0 \, ^{\circ}C)$ 110.7 °C Temperature:

827 ± 7 KPa) 827 kPa Apply Pressure:

 $(0.15 \pm 0.02 \text{ Sec})$ 0.13 Sec 18.5 KJ Energy: Apply Rate:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.727 Sec** Engage Time:

152 N*m 132 N*m 0.2 Sec Dyn: Midpoint Dyn:


210 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.091 0.105 0.145 LwSpd Dynamic:

Date of Test: 1/29/2014

Test Number: C4-9-1449

Time of Test: 11:04:37

2001 Fluid Code: L0292039 Cycle Number: 107.1 °C Temperature:

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 827 kPa Apply Pressure:

827 ± 7 KPa) 0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \text{ Sec})$ 18.5 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.736 Sec** Engage Time:

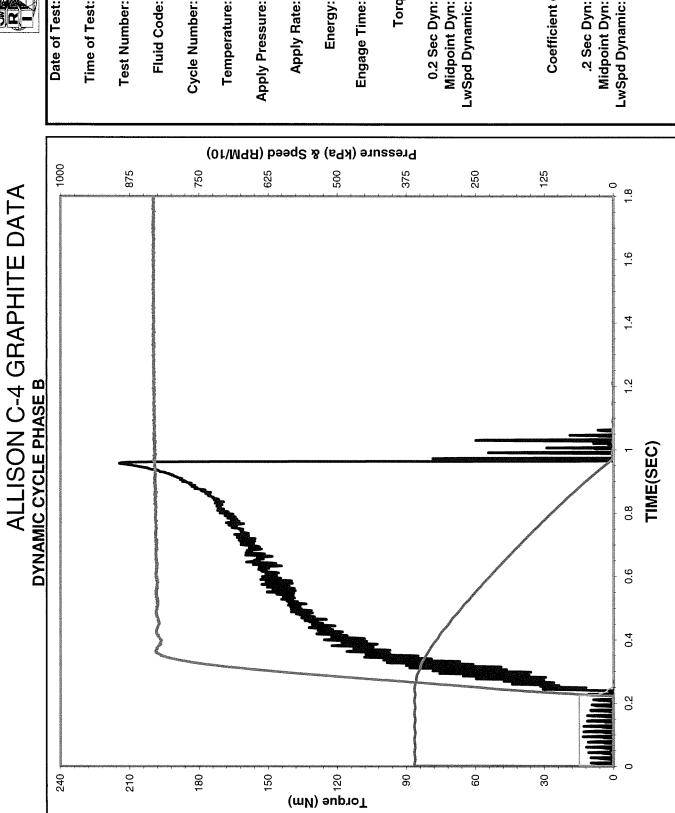
Torque

149 N*m 131 N*m 0.2 Sec Dyn: Midpoint Dyn:

213 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn:


Midpoint Dyn: LwSpd Dynamic:

0.091 0.103 0.147

C4 Reports Version 1.0.8.2

C4 Reports Version 1.0.8.2

Date of Test: 1/29/2014

Time of Test: 13:09:07

Fluid Code: L0292039

Test Number: C4-9-1449

2499 Cycle Number:

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 111.0 °C Temperature:

827 ± 7 KPa) 0.13 Sec 826 kPa Apply Pressure: Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$

18.5 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.741 Sec** Engage Time:

Torque

125 N*m 149 N*m 212 N*m 0.2 Sec Dyn: Midpoint Dyn:

Coefficient of Friction

0.087 0.103 0.147 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Time of Test: 13:09:22

Test Number: C4-9-1449

875

210

180

240

2500 Fluid Code: L0292039 Cycle Number:

750

110.9 °C Temperature:

(112.7 ± 3.0 °C) 826 kPa Apply Pressure:

625

827 ± 7 KPa) 0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ Energy:

Pressure (kPa) & Speed (RPM/10)

500

18.5 KJ

 $(18.71 \pm 0.40 \text{ KJ})$ **0.746 Sec**

Engage Time:

Torque

375

148 N*m Midpoint Dyn:

124 N*m

0.2 Sec Dyn:

209 N*m LwSpd Dynamic:

250

9

30

Coefficient of Friction

125

Midpoint Dyn:

.2 Sec Dyn:

0.086 0.102 0.145

LwSpd Dynamic:

1.8

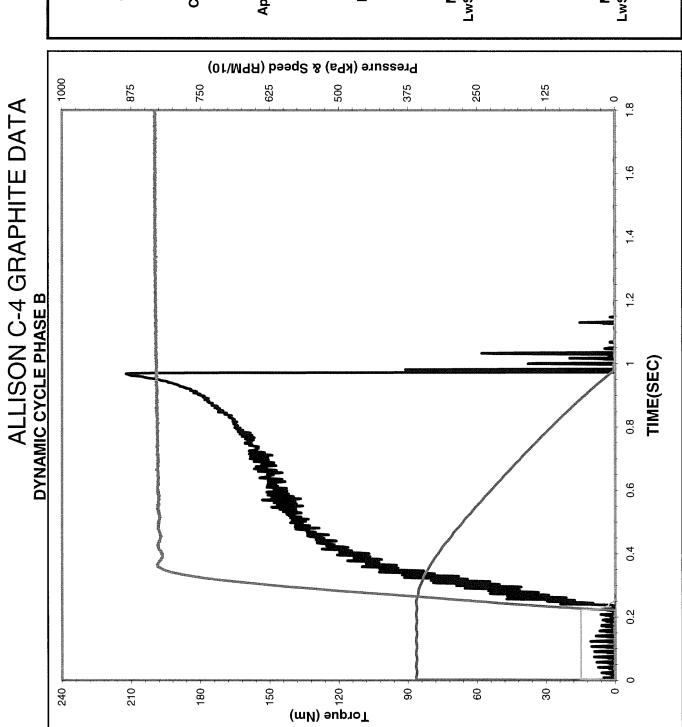
4.

1.2

9.0

4.0

TIME(SEC)


C4 Reports Version 1.0.8.2

9

Torque (Mm)

150

Date of Test: 1/29/2014

Time of Test: 13:09:48

Fluid Code: L0292039

Test Number: C4-9-1449

2501 Cycle Number:

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 106.8 °C Temperature:

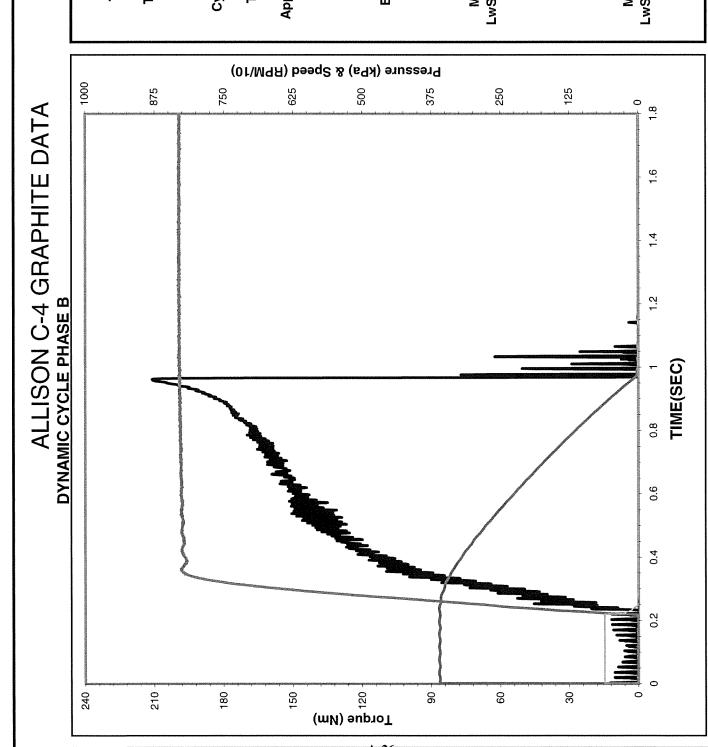
827 ± 7 KPa) 826 kPa Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ 0.13 Sec Apply Rate:

18.4 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.75 Sec **Engage Time:**

0.2 Sec Dyn:


123 N*m 148 N*m 211 N*m Midpoint Dyn: LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.085 0.102 0.146 LwSpd Dynamic:

Date of Test: 1/29/2014 Time of Test: 15:14:18 Test Number: C4-9-1449 Fluid Code: L0292039 2999 Cycle Number:

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 110.9 °C Temperature:

826 kPa Apply Pressure:

827 ± 7 KPa) Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 0.13 Sec

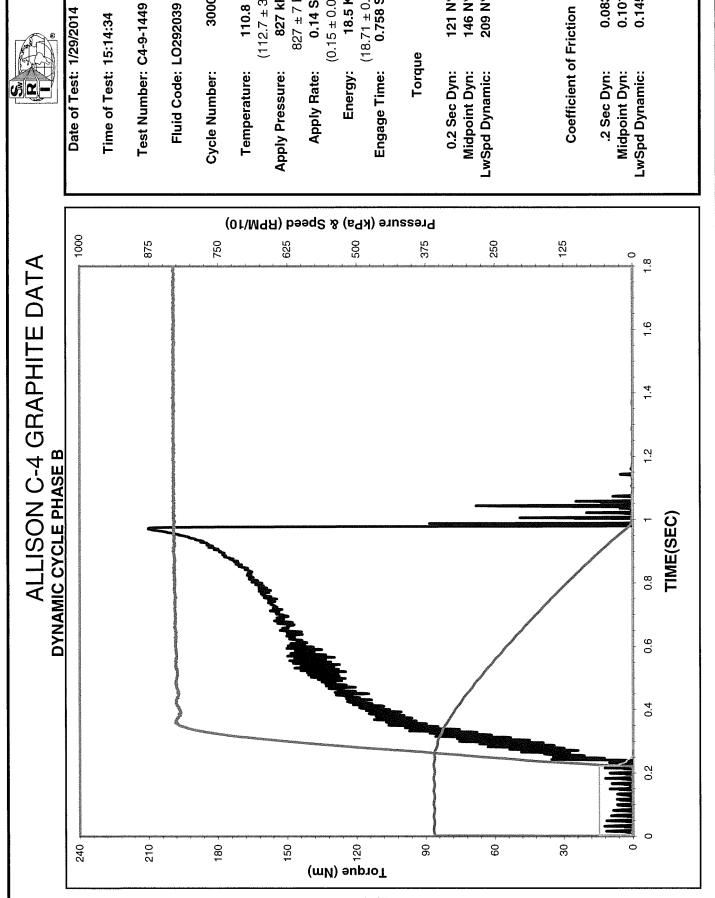
18.5 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.75 Sec** Engage Time:

Torque

148 N*m 121 N*m 0.2 Sec Dyn: Midpoint Dyn:

209 N*m


LwSpd Dynamic:

Coefficient of Friction

0.084 0.102 0.144 .2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

Date of Test: 1/29/2014

Time of Test: 15:14:34

Fluid Code: LO292039

3000 Cycle Number:

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 110.8 °C Temperature:

827 ± 7 KPa) 827 kPa Apply Pressure:

 $(0.15 \pm 0.02 \text{ Sec})$ 0.14 Sec Apply Rate:

18.5 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.758 Sec** Engage Time:

Torque

121 N*m 146 N*m 209 N*m 0.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.083 0.101 0.145 LwSpd Dynamic:

C4 Reports Version 1.0.8.2

1000

DYNAMIC CYCLE PHASE B

Test Number: C4-9-1449

875

210

180

240

Date of Test: 1/29/2014

3001 Fluid Code: L0292039 Cycle Number:

750

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 107.2 °C Temperature:

827 kPa Apply Pressure:

625

827 ± 7 KPa) 0.14 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 18.5 KJ Energy:

Pressure (kPa) & Speed (RPM/10)

500

Torque (Mm)

150

Engage Time:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.765 Sec

Torque

375

120 N*m 146 N*m 0.2 Sec Dyn: Midpoint Dyn:

207 N*m LwSpd Dynamic:

250

09

9

8

Coefficient of Friction

125

.2 Sec Dyn:

Midpoint Dyn:

0.083 0.101 0.143

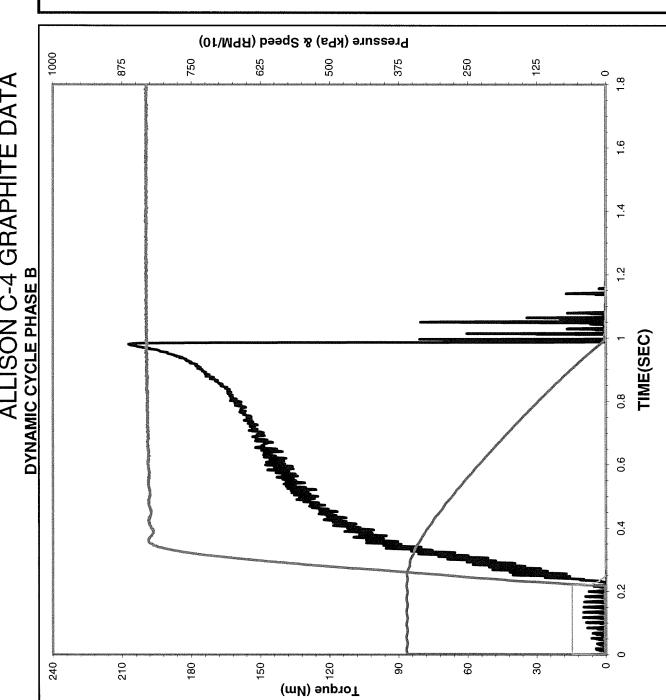
LwSpd Dynamic:

8.

4.

<u>+</u>

0.8


9.0

0.4

TIME(SEC)

C4 Reports Version 1.0.8.2

Date of Test: 1/29/2014

Time of Test: 17:19:30

Test Number: C4-9-1449

Fluid Code: LO292039

111.3 °C Temperature:

3499

Cycle Number:

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 826 kPa Apply Pressure:

827 ± 7 KPa) 0.13 Sec Apply Rate:

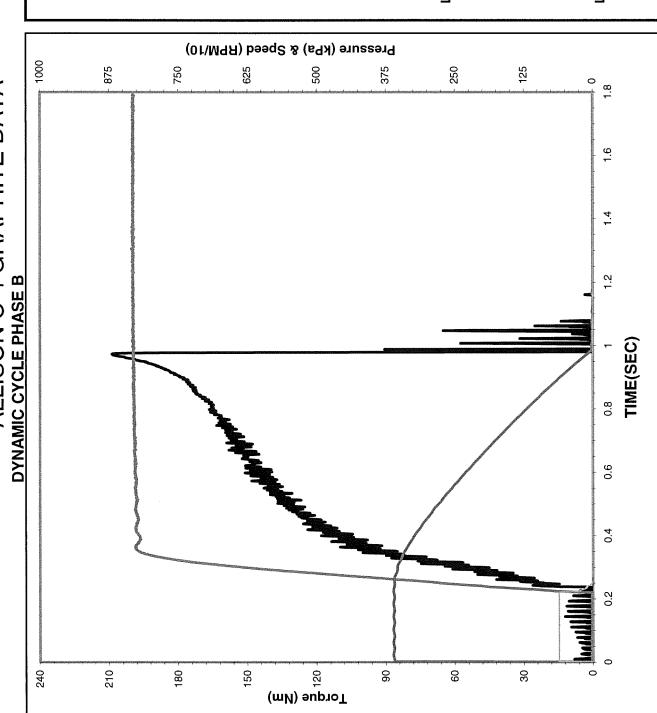
 $(0.15 \pm 0.02 \text{ Sec})$

18.5 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.769 Sec** Engage Time:

Torque

117 N*m 0.2 Sec Dyn: Midpoint Dyn:


144 N*m 204 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.081 0.099 0.141 LwSpd Dynamic:

Date of Test: 1/29/2014

Time of Test: 17:19:45

Test Number: C4-9-1449

Fluid Code: L0292039

3500 Cycle Number: 111.3 °C Temperature:

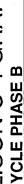
 $(112.7 \pm 3.0 \, ^{\circ}C)$ 826 kPa Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ 827 ± 7 KPa) 0.13 Sec Apply Rate:

18.5 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.759 Sec** Engage Time:

Torque


146 N*m 119 N*m 0.2 Sec Dyn: Midpoint Dyn:

204 N*m LwSpd Dynamic:

Coefficient of Friction

0.082 0.101 0.141 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE B

Date of Test: 1/29/2014

Test Number: C4-9-1449

Fluid Code: L0292039

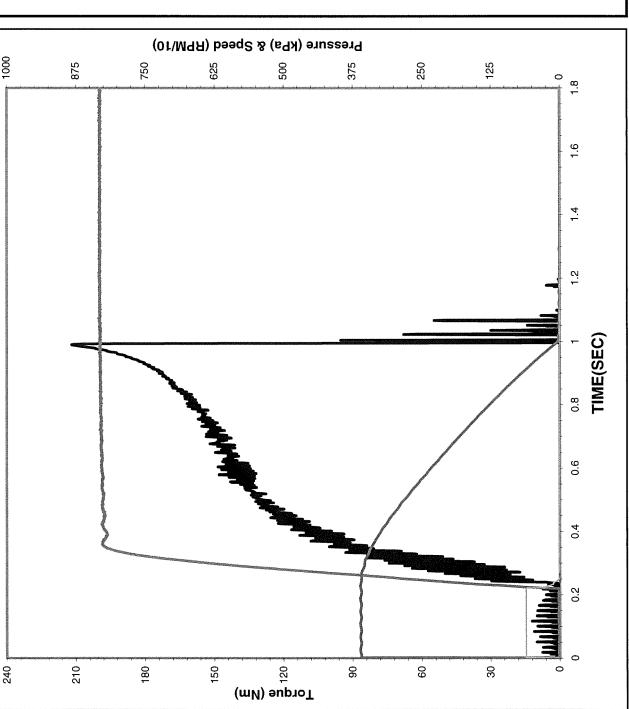
107.2 °C 3501 Cycle Number: Temperature:

(112.7 ± 3.0 °C) 827 kPa Apply Pressure:

827 ± 7 KPa) **0.14 Sec** Apply Rate:

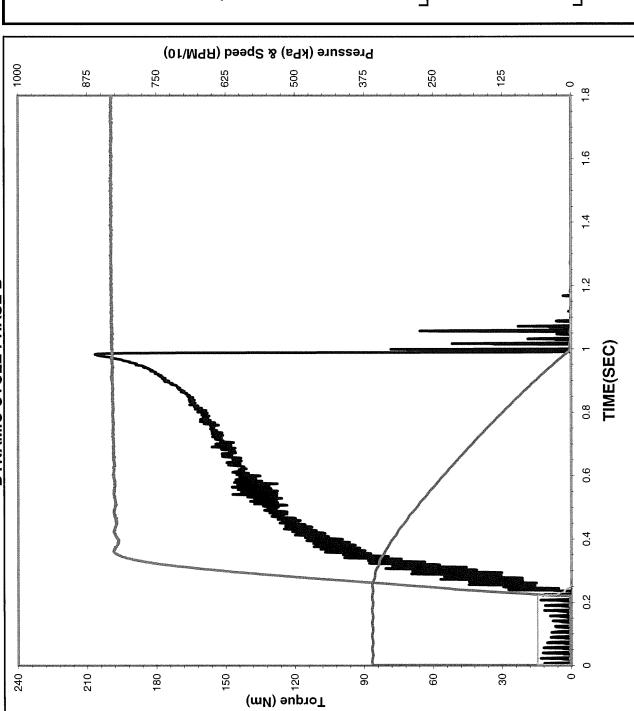
 $(0.15 \pm 0.02 \, \text{Sec})$ 18.5 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.775 Sec** Engage Time:


Torque

116 N*m 0.2 Sec Dyn: Midpoint Dyn:

142 N*m 209 N*m LwSpd Dynamic:


Coefficient of Friction

0.080 0.098 0.144 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Date of Test: 1/29/2014

Time of Test: 19:24:42

Test Number: C4-9-1449

Fluid Code: L0292039

3999 Cycle Number: 111.2 °C Temperature:

(112.7 ± 3.0 °C) **826 kPa** 827 ± 7 KPa) Apply Pressure:

0.14 Sec Apply Rate:

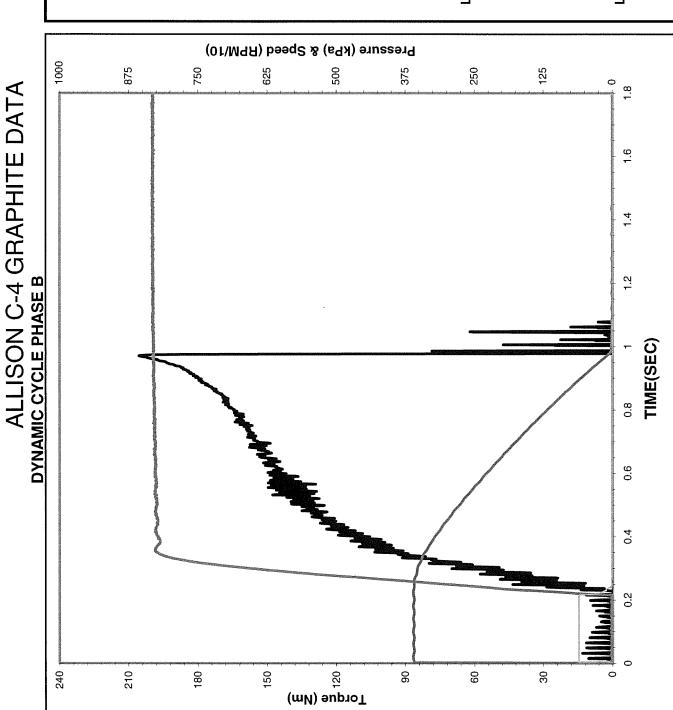
 $(0.15 \pm 0.02 \, \text{Sec})$ 18.5 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.77 Sec**

Engage Time:

Torque

143 N*m 116 N*m 0.2 Sec Dyn: Midpoint Dyn:


203 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.080 0.099 0.141 LwSpd Dynamic:

Date of Test: 1/29/2014

Time of Test: 19:24:57

Test Number: C4-9-1449

4000 Fluid Code: L0292039 Cycle Number: 111.0 °C Temperature:

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 826 kPa Apply Pressure:

827 ± 7 KPa) 0.13 Sec Apply Rate:

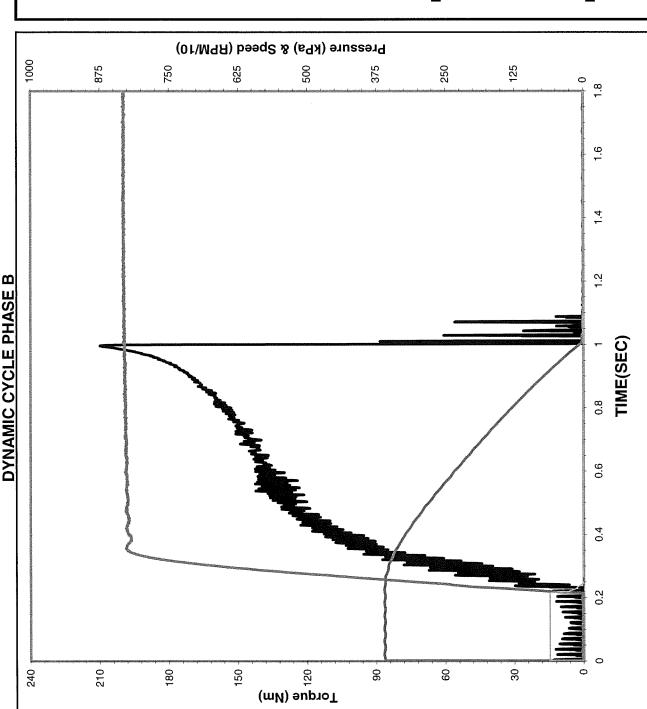
(0.15 ± 0.02 Sec) 18.5 KJ Energy:

(18.71 ± 0.40 KJ) **0.761 Sec** Engage Time:

Torque

146 N*m 118 N*m 0.2 Sec Dyn: Midpoint Dyn:

200 N*m LwSpd Dynamic:


Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.082 0.101 0.138 LwSpd Dynamic:

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE B

Date of Test: 1/29/2014

Time of Test: 19:25:24

Test Number: C4-9-1449

4001 Fluid Code: LO292039 Cycle Number:

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 107.2 °C Temperature:

827 ± 7 KPa) 826 kPa Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ 0.13 Sec Apply Rate:

18.5 KJ Energy:

(18.71 ± 0.40 KJ) **0.787 Sec** Engage Time:

Torque

139 N*m 209 N*m 113 N*m 0.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.078 0.096 0.144 LwSpd Dynamic:

Time of Test: 21:29:54

875

210 -

180

240

Cycle Number:

750

110.7 °C Temperature:

Apply Pressure:

625

Apply Rate:

Pressure (kPa) & Speed (RPM/10)

200

Torque (Mm)

90

09

9

150

Energy:

Engage Time:

Torque

145 N*m 119 N*m 0.2 Sec Dyn: Midpoint Dyn:

198 N*m LwSpd Dynamic:

125

4.

1.2

9.0

0.4

TIME(SEC)

0.082 0.100 0.137 **Coefficient of Friction** .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

DYNAMIC CYCLE PHASE B

Test Number: C4-9-1449

Fluid Code: L0292039

 $(112.7 \pm 3.0 \, ^{\circ}C)$

827 kPa

827 ± 7 KPa) 0.14 Sec

 $(0.15 \pm 0.02 \, \text{Sec})$ 18.5 KJ

(18.71 ± 0.40 KJ) **0.766 Sec**

250

Test Number: C4-9-1449

Fluid Code: LO292039

4500 Cycle Number: 111.0 °C

Temperature:

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 827 kPa Apply Pressure:

827 ± 7 KPa) Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 0.13 Sec

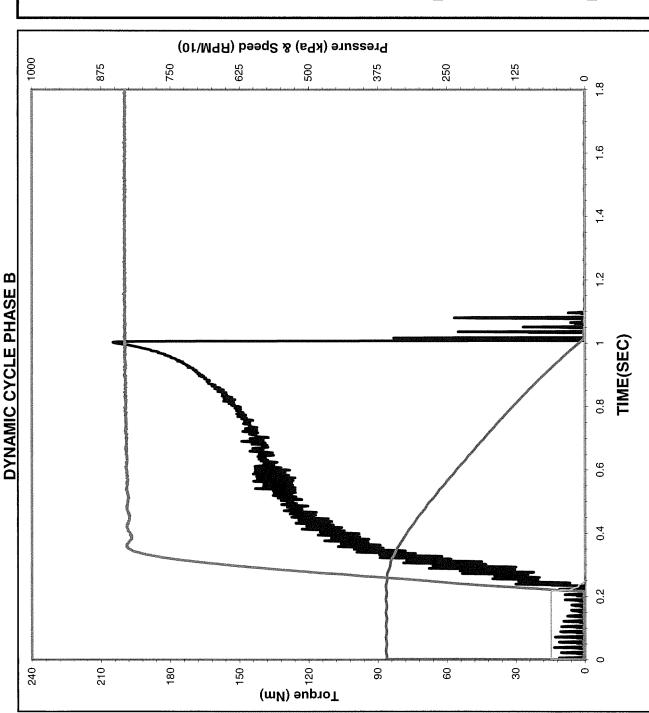
18.5 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.782 Sec** Engage Time:

Torque

116 N*m 0.2 Sec Dyn: Midpoint Dyn:

141 N*m 199 N*m


LwSpd Dynamic:

Coefficient of Friction

0.080 0.097 0.137 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Pressure (kPa) & Speed (RPM/10) 1000 875 625 500 250 125 750 8. 4. <u>۲</u> TIME(SEC) 9.0 9.4 210 -240 180 Torque (Mm) 90 09 9 150

Date of Test: 1/29/2014 Time of Test: 21:30:36 Fluid Code: L0292039

Test Number: C4-9-1449

4501 Cycle Number:

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 106.9 ℃ Temperature:

827 ± 7 KPa) 828 kPa Apply Pressure:

0.14 Sec Apply Rate:

 $(0.15 \pm 0.02 \text{ Sec})$ 18.5 KJ Energy:

(18.71 ± 0.40 KJ) **0.791 Sec** Engage Time:

Torque

116 N*m 0.2 Sec Dyn: Midpoint Dyn:

139 N*m 204 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.080 0.096 0.141 LwSpd Dynamic:

Time of Test: 23:35:06

Test Number: C4-9-1449 Fluid Code: L0292039

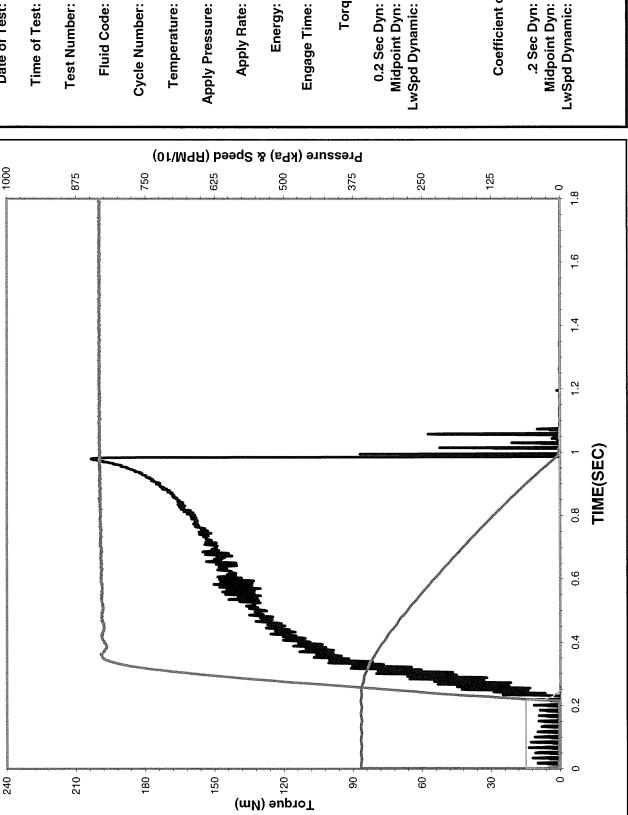
4999 Cycle Number: 111.0 °C

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 828 kPa Apply Pressure:

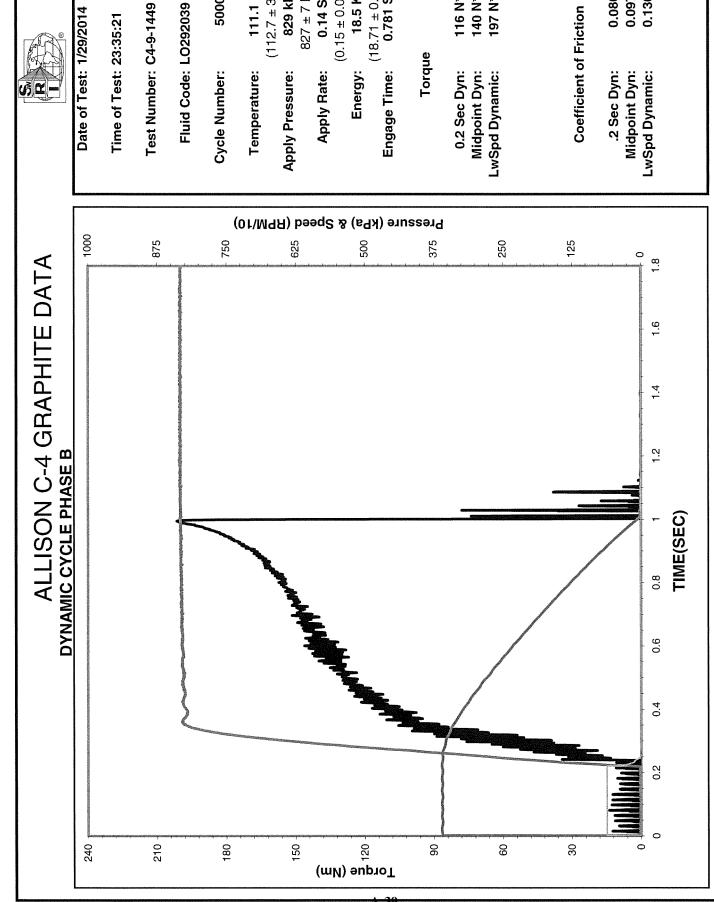
 $(0.15 \pm 0.02 \text{ Sec})$ 827 ± 7 KPa) **0.14 Sec** Apply Rate:

18.5 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.77 Sec Engage Time:


Torque

144 N*m 199 N*m 118 N*m 0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:


Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.081 0.099 0.137 LwSpd Dynamic:

Date of Test: 1/29/2014

Time of Test: 23:35:21

Fluid Code: LO292039

5000 Cycle Number:

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 111.1 °C Temperature:

829 kPa Apply Pressure:

827 ± 7 KPa) 0.14 Sec Apply Rate:

 $(0.15 \pm 0.02 \text{ Sec})$ 18.5 KJ Energy:

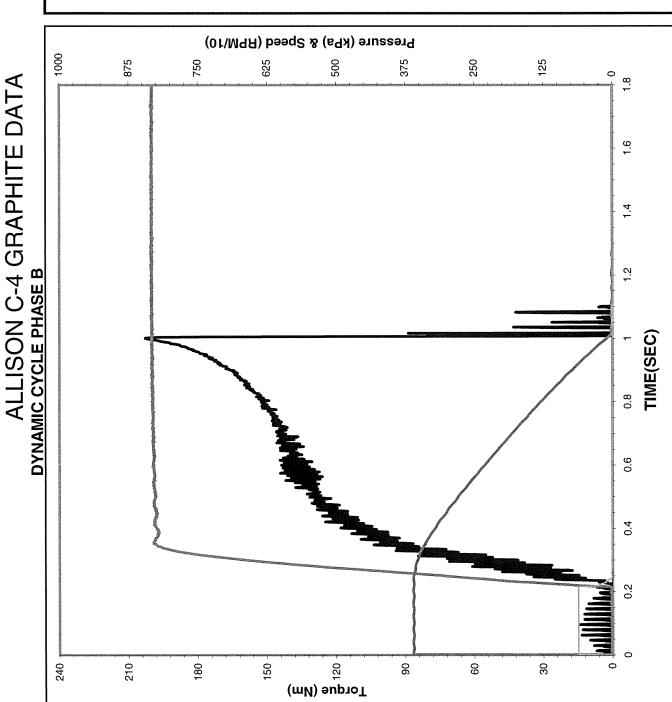
(18.71 ± 0.40 KJ) **0.781 Sec**

Engage Time:

Torque

116 N*m 0.2 Sec Dyn: Midpoint Dyn:

140 N*m 197 N*m LwSpd Dynamic:


Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

0.080 0.097 0.136

Date of Test: 1/29/2014

Time of Test: 23:35:47

Fluid Code: LO292039

Test Number: C4-9-1449

5001 Cycle Number: $(112.7 \pm 3.0 \, ^{\circ}C)$ 829 kPa Apply Pressure:

107.1 °C

Temperature:

827 ± 7 KPa) 0.14 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$

18.5 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.792 Sec** Engage Time:

Torque

117 N*m 0.2 Sec Dyn: Midpoint Dyn:

139 N*m 198 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.081 0.096 0.136 LwSpd Dynamic:

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE B

Time of Test: 1:40:02

Test Number: C4-9-1449

210

240

180

5498 Fluid Code: LO292039 Cycle Number: 111.1 °C Temperature:

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 827 kPa Apply Pressure:

827 ± 7 KPa) 0.13 Sec Apply Rate:

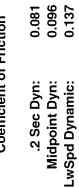
 $(0.15 \pm 0.02 \, \text{Sec})$ Energy:

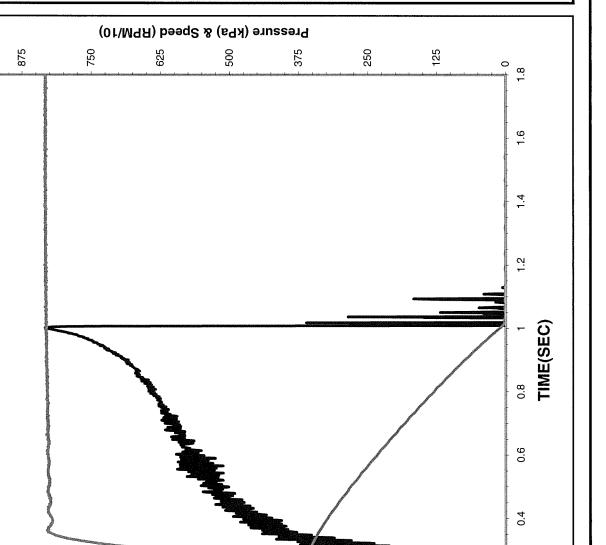
Torque (Mm)

150

18.5 KJ

(18.71 ± 0.40 KJ) **0.787 Sec**

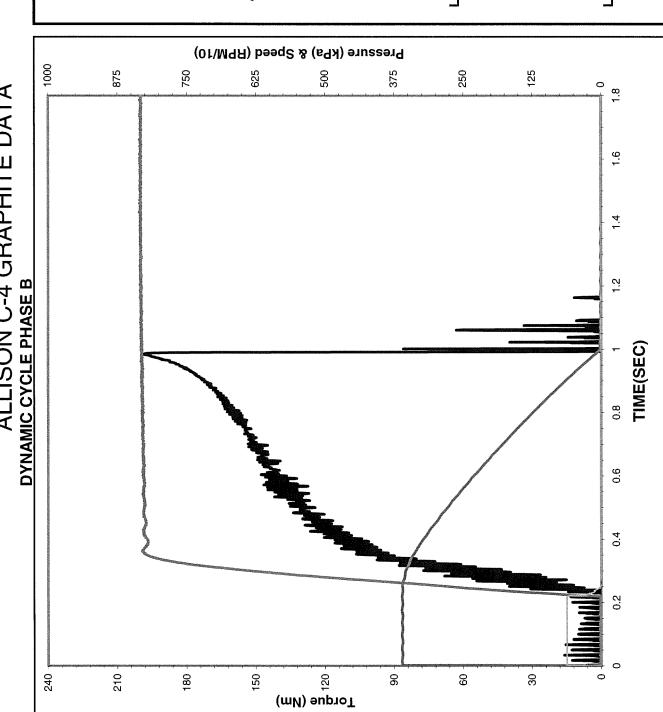

Engage Time:


Torque

117 N*m 0.2 Sec Dyn:

139 N*m 198 N*m Midpoint Dyn: LwSpd Dynamic:

Coefficient of Friction



09

8

8

Date of Test: 1/30/2014

Test Number: C4-9-1449

Time of Test: 1:40:18

Fluid Code: L0292039

5499 Cycle Number:

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 111.2 °C Temperature:

827 ± 7 KPa) 827 kPa Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ 0.14 Sec Apply Rate:

18.5 KJ Energy:

(18.71 ± 0.40 KJ) **0.772 Sec** Engage Time:

Torque

143 N*m 119 N*m 0.2 Sec Dyn: Midpoint Dyn:

196 N*m LwSpd Dynamic:

Coefficient of Friction

0.082 0.099 0.136 .2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

210 -

180

240

Date of Test: 1/30/2014

Test Number: C4-9-1449 Time of Test: 1:40:33

Fluid Code: L0292039

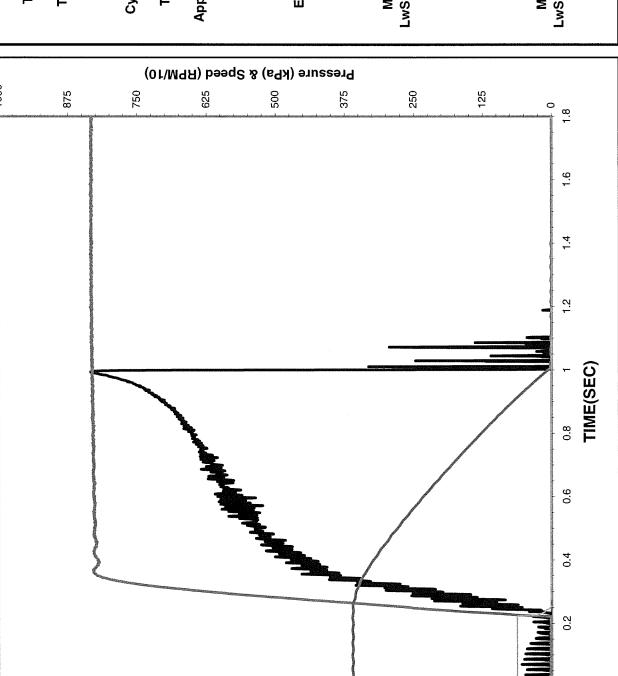
5500 Cycle Number:

 $(112.7 \pm 3.0 \, ^{\circ}C)$ 111.0 °C Temperature:

827 ± 7 KPa) 827 kPa 0.13 Sec Apply Rate: Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ 18.5 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.78 Sec Engage Time:


Torque

117 N*m 0.2 Sec Dyn: Midpoint Dyn:

141 N*m 197 N*m LwSpd Dynamic:

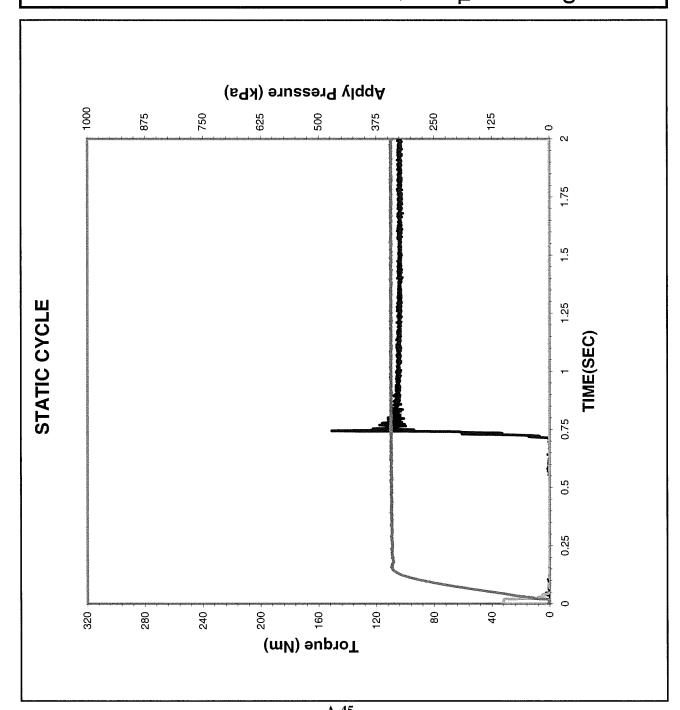
Coefficient of Friction

0.081 0.097 0.136 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Torque (Mm) ²
²

150

8


9

30

STATIC TRACES

Date of Test: 1/29/2014

Time of Test: 2:37:05

Test Number: C4-9-1449 Fluid Code: LO292039

Cycle Number:

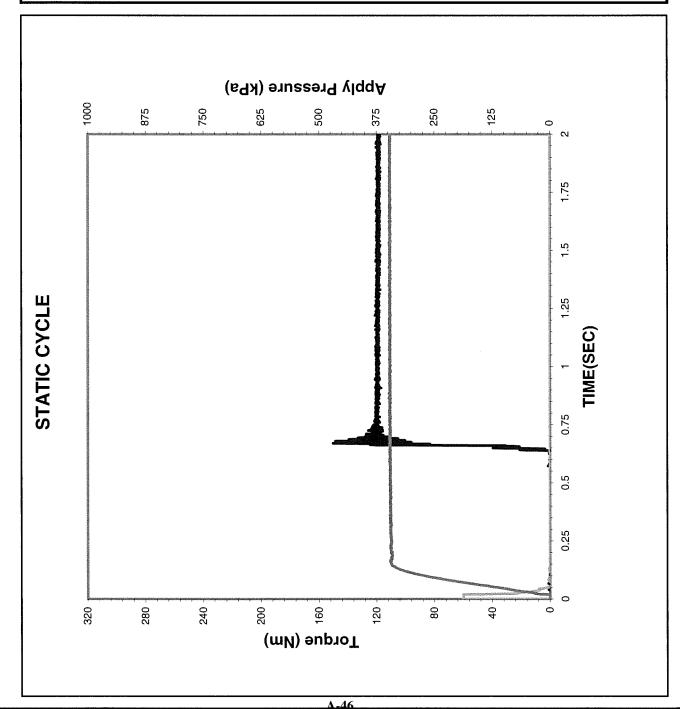
9

PHASE A

341 kPa

Apply Pressure: At .25 Second:

Torque Static Peak: .25 Second:


152 Nm 105 Nm

Coefficient of Friction

Static Peak: .25 Second:

0.252 0.174

Date of Test: 1/29/2014

Test Number: C4-9-1449 Time of Test: 4:39:47

Fluid Code: LO292039

Cycle Number:

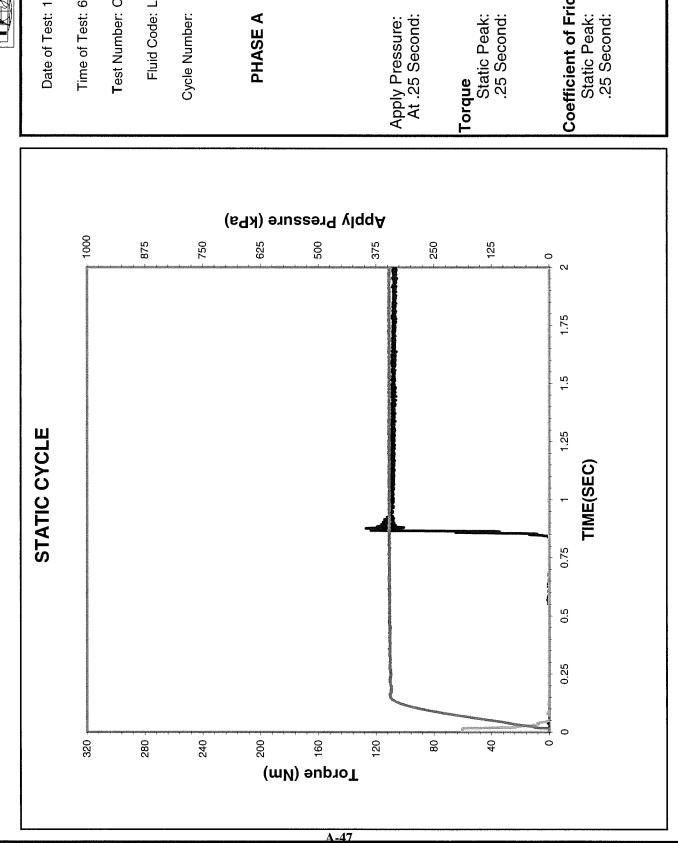
500

PHASE A

Apply Pressure: At .25 Second:

346 kPa

Torque Static Peak: .25 Second:


151 Nm 122 Nm

Coefficient of Friction

Static Peak: .25 Second:

0.251

Date of Test: 1/29/2014

Time of Test: 6:44:59

Test Number: C4-9-1449 Fluid Code: LO292039

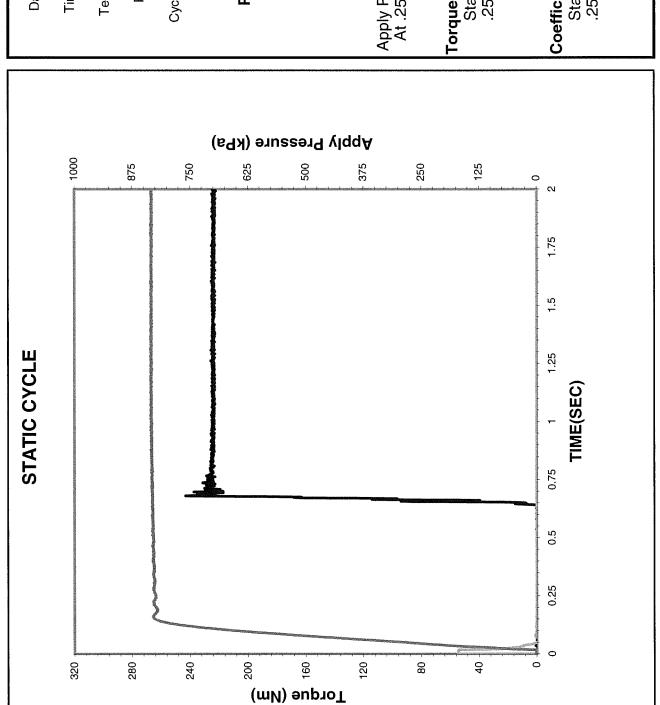
Cycle Number:

1000

PHASE A

Apply Pressure: At .25 Second:

346 kPa


128 Nm 110 Nm

Coefficient of Friction

Static Peak: .25 Second:

0.213

827 kPa 1500 Test Number: C4-9-1449 Fluid Code: LO292039 Date of Test: 1/29/2014 Time of Test: 8:59:10 Cycle Number: PHASE B Apply Pressure: At .25 Second:

244 Nm 226 Nm **Torque** Static Peak: .25 Second:

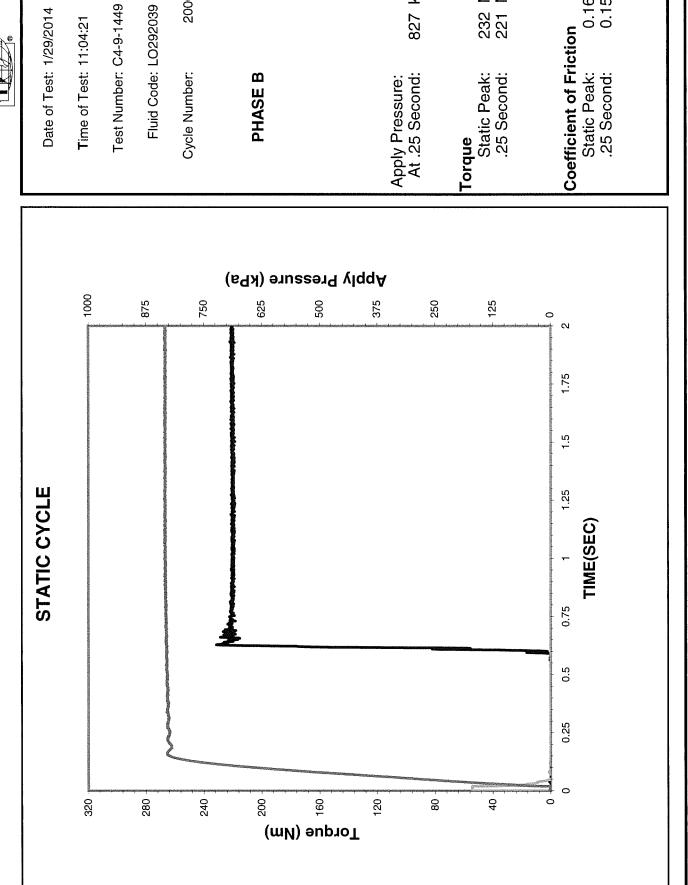
0.169 0.156 **Coefficient of Friction**

Static Peak: .25 Second:

232 Nm 221 Nm

0.161

827 kPa


ALLISON C-4 GRAPHITE DATA

2000

PHASE B

Fluid Code: LO292039

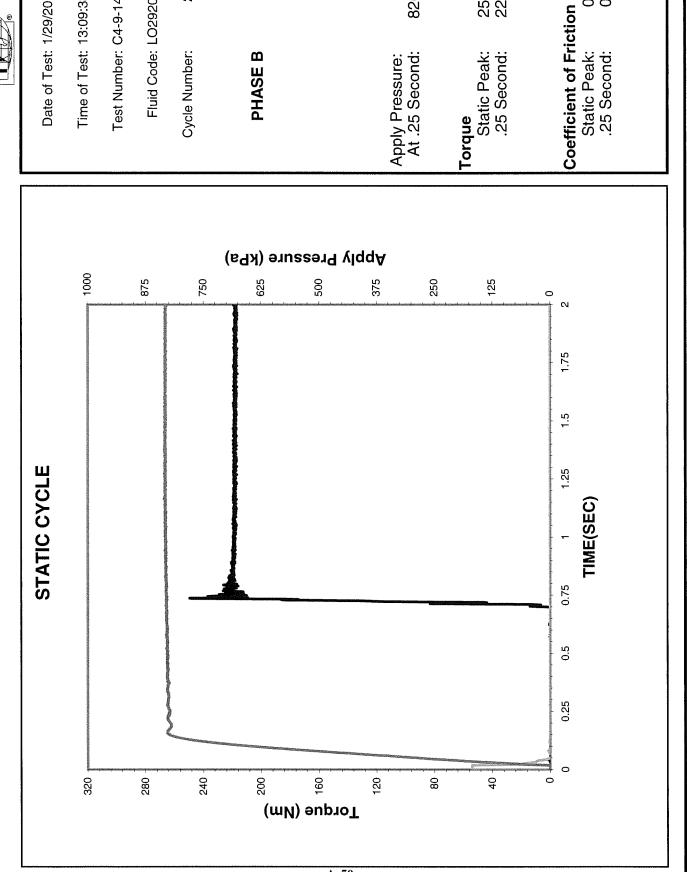
A-49

251 Nm 220 Nm

826 kPa

ALLISON C-4 GRAPHITE DATA

Date of Test: 1/29/2014


Time of Test: 13:09:33

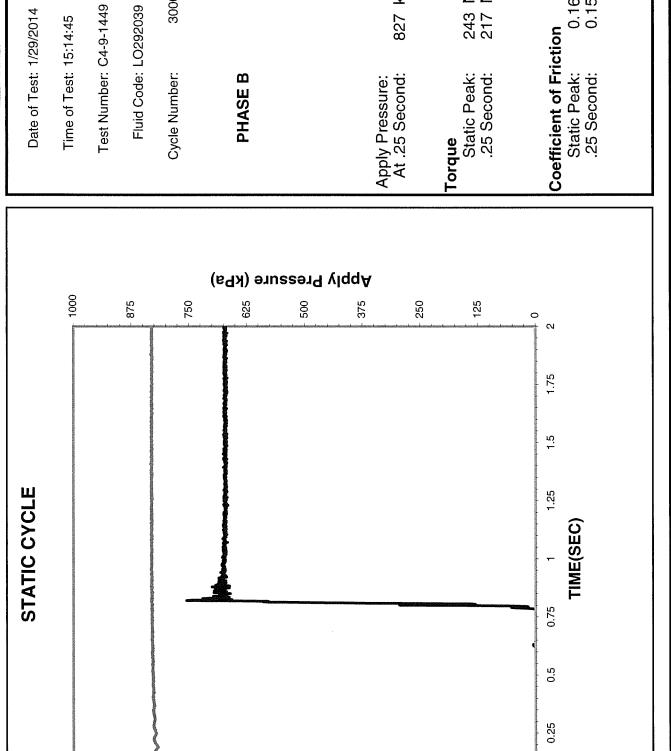
2500

PHASE B

Test Number: C4-9-1449

Fluid Code: LO292039

320


280

240

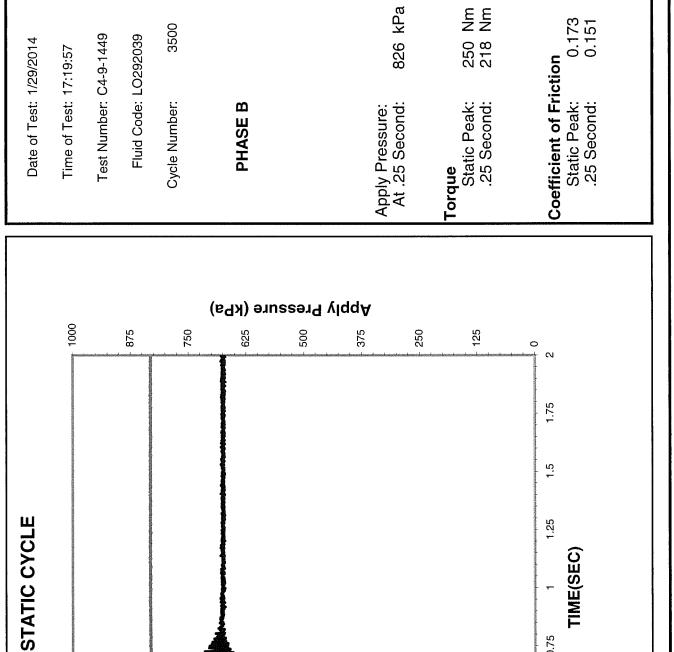
200

3000

160

Torque (Nm)

120


243 Nm 217 Nm

40

8

827 kPa

200

160

Torque (Mm)

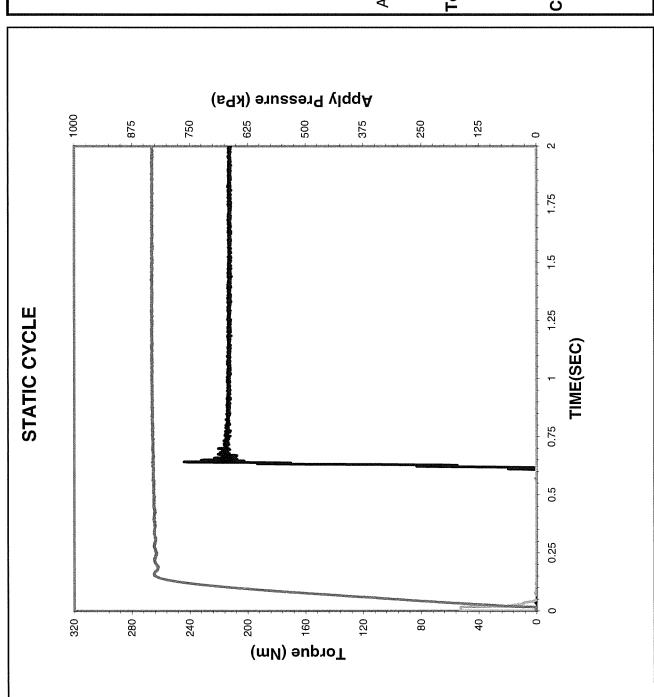
120

240

320

280

0.75


0.5

0.25

40

80

Time of Test: 19:25:09

Test Number: C4-9-1449

Fluid Code: LO292039

Cycle Number:

4000

PHASE B

Apply Pressure: At .25 Second:

826 kPa

245 Nm 215 Nm Torque Static Peak: .25 Second:

Coefficient of Friction

Static Peak: .25 Second:

C4 Reports Version 1.0.8.2

231 Nm 212 Nm

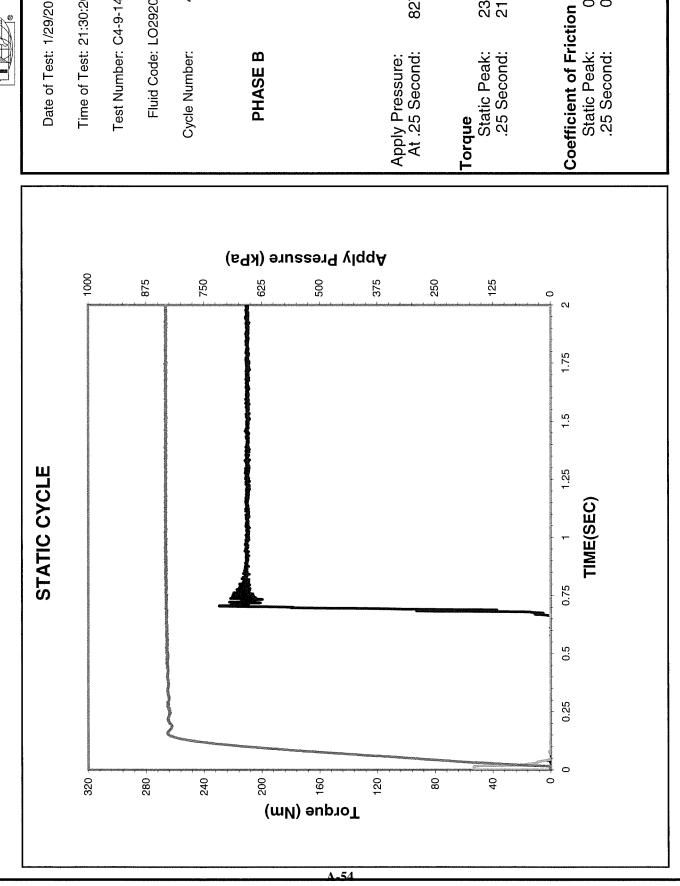
Static Peak: .25 Second:

827 kPa

ALLISON C-4 GRAPHITE DATA

Date of Test: 1/29/2014

Time of Test: 21:30:20


4500

Cycle Number:

PHASE B

Test Number: C4-9-1449

Fluid Code: LO292039

240 Nm 212 Nm

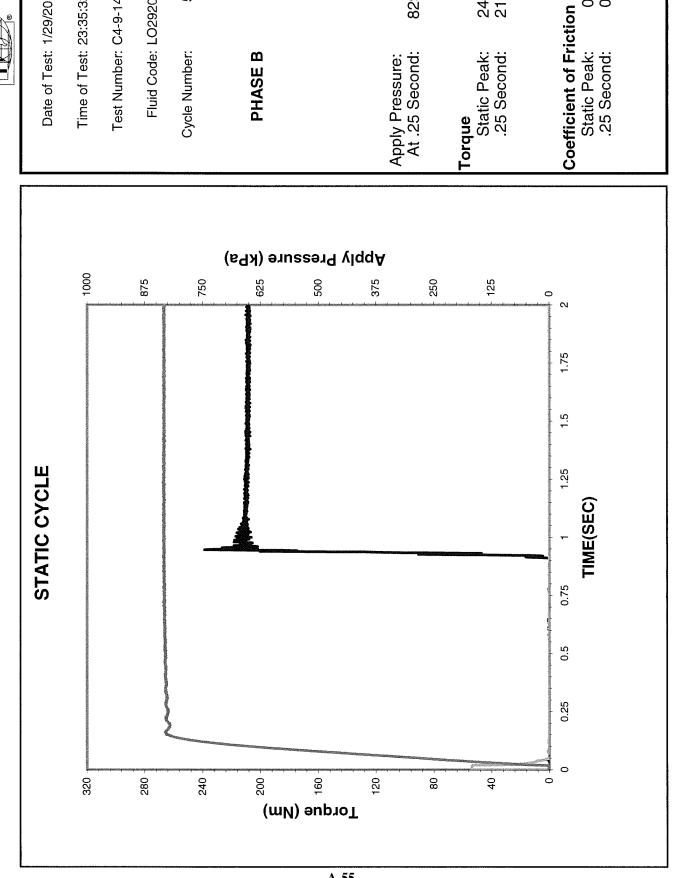
Static Peak: .25 Second:

829 kPa

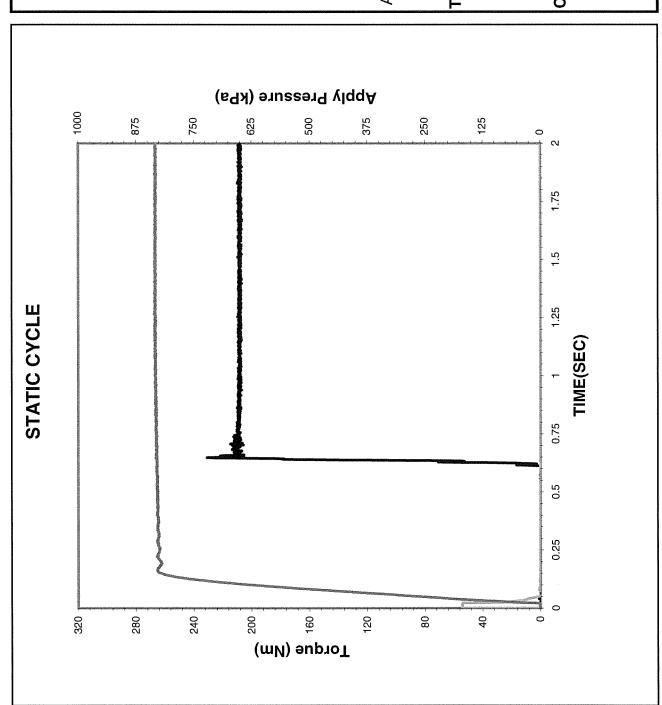
ALLISON C-4 GRAPHITE DATA

Date of Test: 1/29/2014

Time of Test: 23:35:32


5000

Cycle Number:


PHASE B

Test Number: C4-9-1449

Fluid Code: LO292039

Date of Test: 1/30/2014

Test Number: C4-9-1449 Time of Test: 1:40:44

Fluid Code: LO292039

Cycle Number:

5500

PHASE B

Apply Pressure: At .25 Second:

827 kPa

232 I 211 I Torque Static Peak: .25 Second:

Coefficient of Friction Static Peak: .25 Second:

SOUTHWEST RESEARCH INSTITUTE® San Antonio, Texas

Fuels and Lubricants Research Division

This page has been AMENDED.

Report on

ALLISON TRANSMISSION FLUID TYPE C-4 PAPER CLUTCH FRICTION TEST

Conducted For

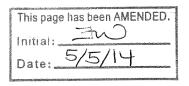
ARMY LAB

Oil Code: LO292039

Test Number: C2-7-1615

January 29, 2014

Submitted by:


Manager

Specialty & Driveline Fluids Evaluation

The results of this report relate only to the fluid tested.

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute®.

TES-295 Heavy Duty Transmission

Fluid Specification

Allison Transmission Division

IX. Paper Clutch Friction Test

Test Laboratory: SWRI Test Number: C2-7-1615 Friction Plate Batch: LOT 6 Steel Plate Batch: 10/9/2008

Lab Fluid Code: LO-292039 Sponsor Fluid Code: LO292039

01/29/14 Completion Date:

Clutch Wear Data

(units in mm)

	Maximum	Average
Steel Plates	0.0010	0.0001
Clutch Plate	0.1170	0.0988

	Before	After
Pack Clearance	1.0414	1.2446

Reference Tests

	Test Number	Test Date	Test Fluid
	C2-0-1581	06/04/12	TRANSYND RD 07-27-11
1	C2-0-1592	01/04/13	RDL-2746 08-12
	C2-0-1608	10/10/13	RDL-2746 08-12

	New	EOT
Viscosity at 40°C, cSt	45.28	39.12
Viscosity at 100°C, cSt	8.53	7.70
Iron Content, ppm	1	183

D5185	New Fluid (ppm)
Ва	<1
В	16
Ca	973
Mg	1305
Р	1142
Si	6
Na	10
Zn	1244

Name: Matthew Jackson

Title: Manager

Signature:

Date:

ALLISON C- 4 PAPER FRICTION TEST

(Torque in N*m)

Sponsor Fluid Code: LO292039

Test Number: **C2-7-1615**

Lab Fluid Code: LO-292039

Fric. Plate Batch: LOT 6

Completion Date: 01/29/2014

Steel Plate Batch: 10/9/2008

TORQUE

	SLIP	TORQUE	TORQUE	STATIC PEAK	LOW SPEED	LOWSPEED
CYCLE	TIME	(MIDPOINT)	STATIC PEAK	- MIDPOINT	STATIC PEAK	STATIC TORQUE
100	0.50	197	350	153	380	362
500	0.47	209	356	147	380	367
1000	0.45	223	344	121	364	358
2500	0.43	238	335	97	344	338
5000	0.42	246	326	80	337	328
7500	0.43	239	324	85	336	325
10000	0.43	239	312	73	333	321

COEFFICIENT OF FRICTION

	SLIP	TORQUE	TORQUE TORQUE		LOW SPEED	LOWSPEED	
CYCLE	TIME	(MIDPOINT)	STATIC PEAK	- MIDPOINT	STATIC PEAK	STATIC TORQUE	
100	0.50	0.096	0.170	0.074	0.185	0.176	
500	0.47	0.102	0.173	0.071	0.185	0.179	
1000	0.45	0.109	0.168	0.059	0.177	0.174	
2500	0.43	0.116	0.163	0.047	0.168	0.165	
5000	0.42	0.120	0.159	0.039	0.164	0.160	
7500	0.43	0.116	0.158	0.042	0.164	0.158	
10000	0.43	0.116	0.152	0.036	0.162	0.156	

	Lii	mits		Results		
	Value	% Change	100 N	10,000 N	% Change	P/F
Slip Time Max.	0.600	N/A	0.500	0.430	-14.00	Р
Mid-Point Fric. Coeff. Min.	0.096	N/A	0.096	0.116	20.83	Р
Static Friction Coeff.	N/A	N/A	0.170	0.152	-10.59	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.185	0.162	-12.43	
0.25 Second Low Speed Coeff.	N/A	N/A	0.176	0.156	-11.36	

SOUTHWEST RESEARCH INSTITUTE®

ALLISON C4-PAPER FRICTION TEST

S. R

(all units in mm)

Candidate Flui	d: LO292039	T	est Number	: C2-7-161	5	Completion	Date : 1/29/2	2014	
Lab Fluid Code : LO-292039		9	Steel Plate Batch: 10/09/2008				Fric Plate Batch : LOT 6		
	Location					Inner	Average	Outer	
Plates	of Tooth	Near Inner	Near Inner Diameter		Near Outer Diameter		Overall	Diameter	
	(Clockwise)	Before	After	Before	After	Change	Change	Change	
			FRIC	TION MATERIAL					
	Тор	2.0630	1.9500	2.0510	1.9580	0.1130		0.0930	
2	120	2.0620	1.9570	2.0510	1.9680	0.1050		0.0830	
	240	2.0640	1.9640	2.0550	1.9780	0.1000		0.0770	
	Average				stra Li	0.1060	0.0952	0.0843	
	Тор	2.0620	1.9570	2.0500	1.9670	0.1050		0.0830	
5	120	2.0600	1.9430	2.0450	1.9510	0.1170		0.0940	
	240	2.0610	1.9480	2.0520	1.9500	0.1130		0.1020	
	Average				अवस्थितिक ।	0.1117	0.1024	0.0930	
				S SEPARATOR					
-	Тор	1.7520	1.7520	1.7520	1.7520	0.0000		0.0000	
1	120	1.7530	1.7530	1.7530	1.7530	0.0000		0.0000	
	240	1.7520	1.7520	1.7530	1.7520	0.0000		0.0010	
	Average					0.0000	0.0002	0.0003	
	Тор	1.7480	1.7480	1.7480	1.7480	0.0000		0.0000	
3	120	1.7480	1.7480	1.7490	1.7490	0.0000		0.0000	
	240	1.7480	1.7480	1.7490	1.7490	0.0000		0.0000	
	Average					0.0000	0.0000	0.0000	
	Тор	1.7490	1.7490	1.7490	1.7490	0.0000		0.0000	
4	120	1.7490	1.7490	1.7490	1.7490	0.0000		0.0000	
	240	1.7480	1.7480	1.7470	1.7470	0.0000		0.0000	
	Average					0.0000	0.0000	0.0000	
	Тор	1.7670	1.7660	1.7690	1.7690	0.0010		0.0000	
6	120	1.7670	1.7670	1.7670	1.7670	0.0000		0.0000	
İ	240	1.7700	1.7700	1.7700	1.7700	0.0000		0.0000	

PLATE CONDITION AT E.O.T.:

Average

PLATES IN GOOD CONDITION WITH LIGHT DISCOLORATION ON INNER STEEL

(Anything Unusual)

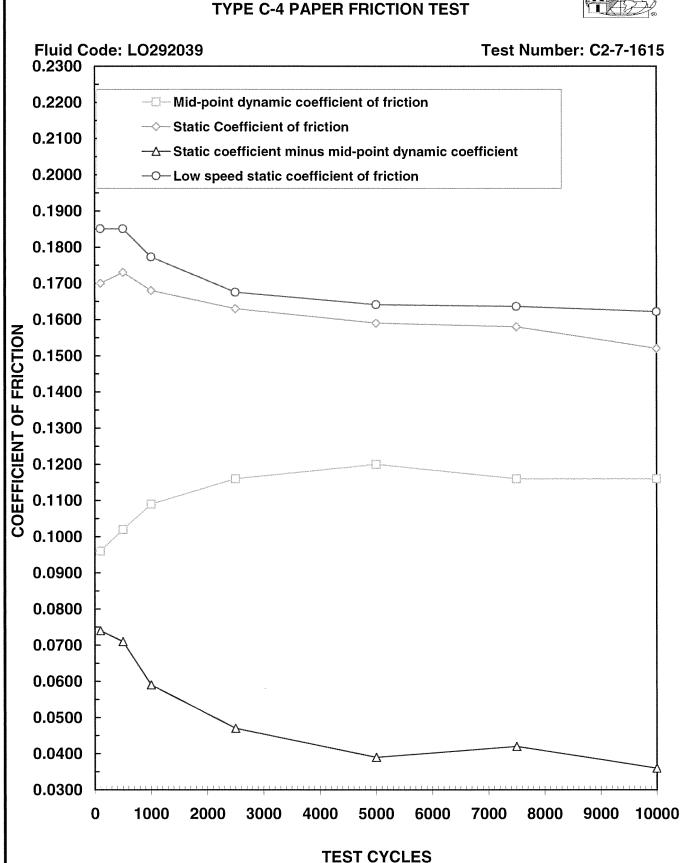
PLATES. MICROMETER #0221190

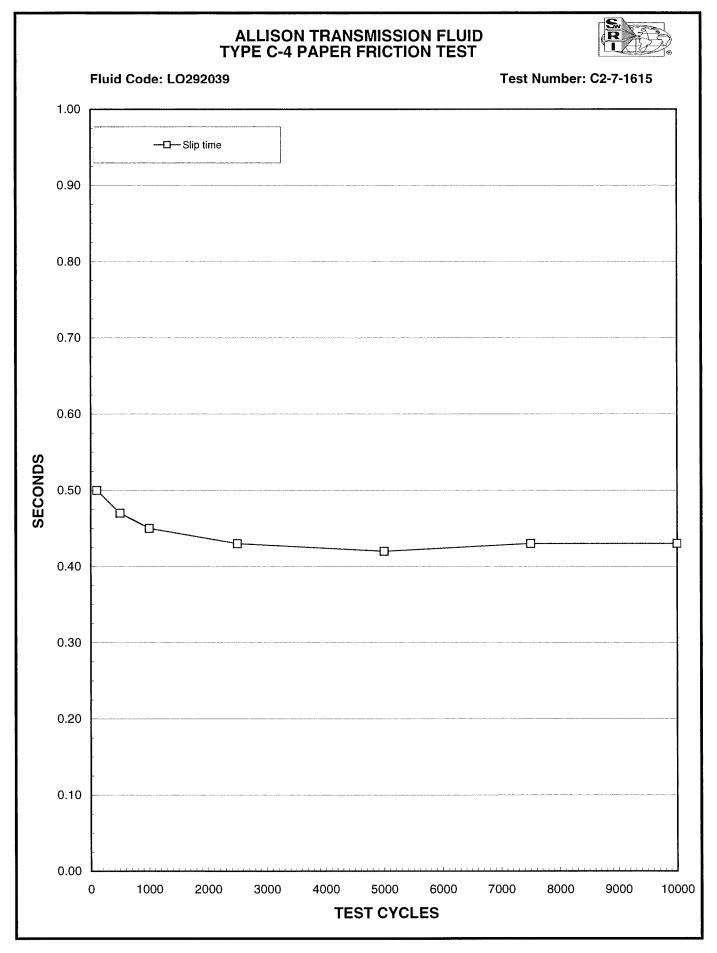
Test Date and Operator's Name:

1/29/2014 MARK HOLMES

Pack ID#: 5107

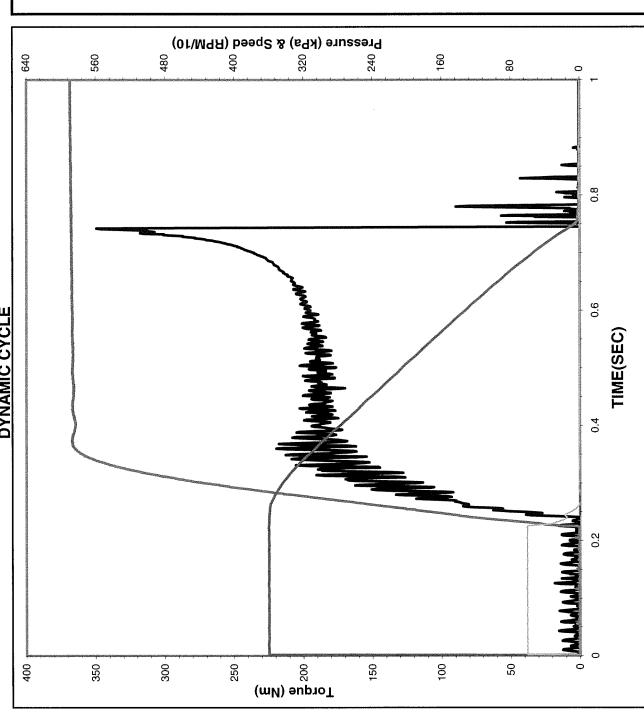
Reviewed By (Signature and Date)


0.0003


0.0002

0.0000

Temp: Max=94.8°C Min=50.2°C Ava=92.4°C LO292039 **Cycle Number** C2-7-1615 Temperature (°C)


Page 6 of 38

DYNAMIC TRACES

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

Date of Test: 1/27/2014 Time of Test: 16:12:56 Test Number: C2-7-1615 Fluid Code: L0292039

Cycle Number:

(93.3 ± 3.0 °C) 586 kPa 89.4 °C Temperature: Apply Pressure:

(586 ± 7 KPa) 0.14 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$

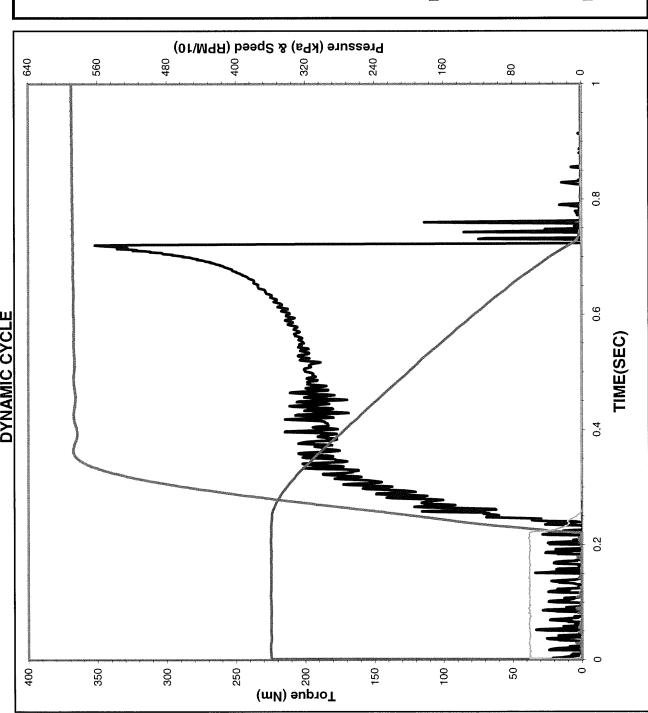
18.5 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ **0.519 Sec** Engage Time:

Torque

190 N*m 0.2 Sec Dyn: Midpoint Dyn:

190 N*m 352 N*m LwSpd Dynamic:


Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.093 0.093 0.171 LwSpd Dynamic:

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

Date of Test: 1/27/2014 Time of Test: 16:35:27 Fluid Code: L0292039

Test Number: C2-7-1615

Cycle Number:

(93.3 ± 3.0 °C) 92.9 °C Temperature:

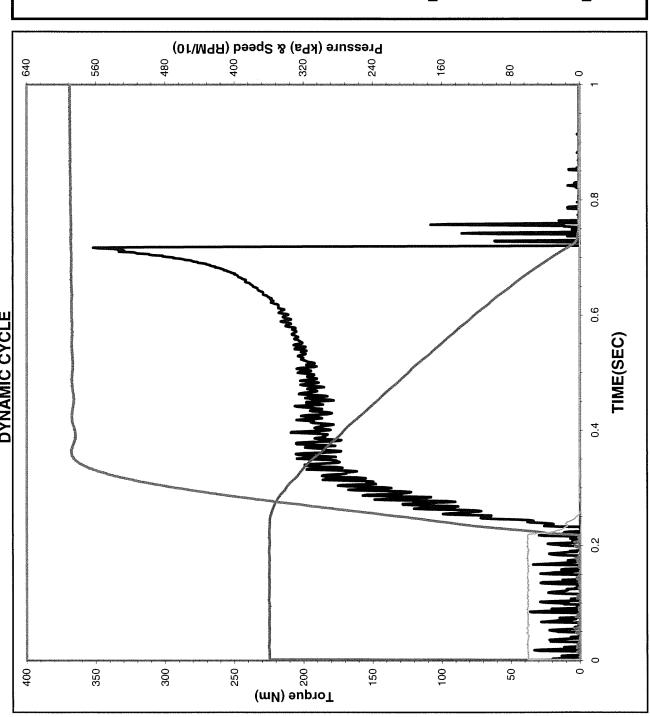
586 kPa (586 ± 7 KPa) 0.13 Sec (0.15 ± 0.02 Sec) Apply Pressure: Apply Rate:

18.5 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.502 Sec Engage Time:

Torque

194 N*m 0.2 Sec Dyn: Midpoint Dyn:


195 N*m 354 N*m LwSpd Dynamic:

Coefficient of Friction

0.094 0.095 0.172 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

Date of Test: 1/27/2014 Time of Test: 16:35:42 Fluid Code: L0292039

Test Number: C2-7-1615

2 Cycle Number: 92.7 °C Temperature:

Apply Pressure:

(93.3 ± 3.0 °C) **587 kPa** (586 ± 7 KPa) **0.13 Sec** Apply Rate:

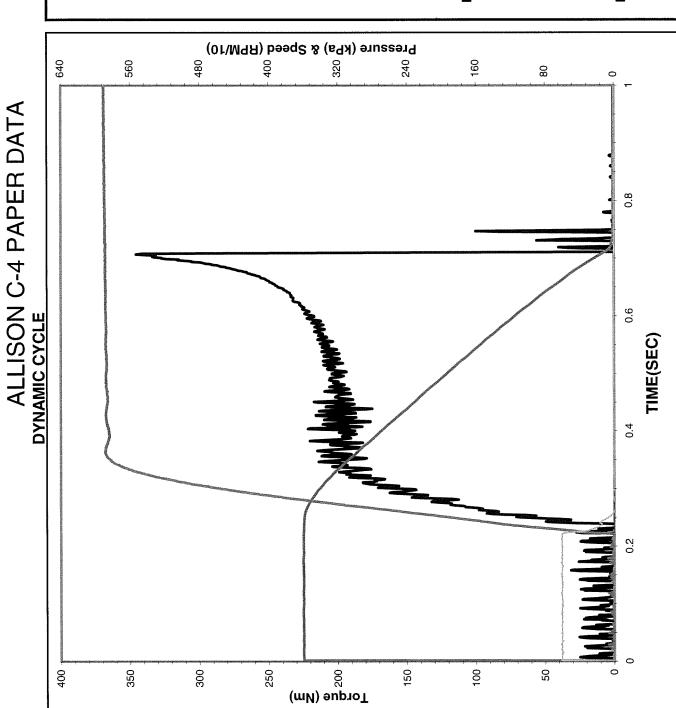
(0.15 ± 0.02 Sec) 18.5 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.501 Sec Engage Time:

Torque

196 N*m 195 N*m 0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

354 N*m


Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

0.095 0.095 0.172

Date of Test: 1/27/2014

Time of Test: 16:36:13

Fluid Code: LO292039

Test Number: C2-7-1615

101 Cycle Number:

(3° 0.8 ± 8.8°) 85.4 °C Temperature:

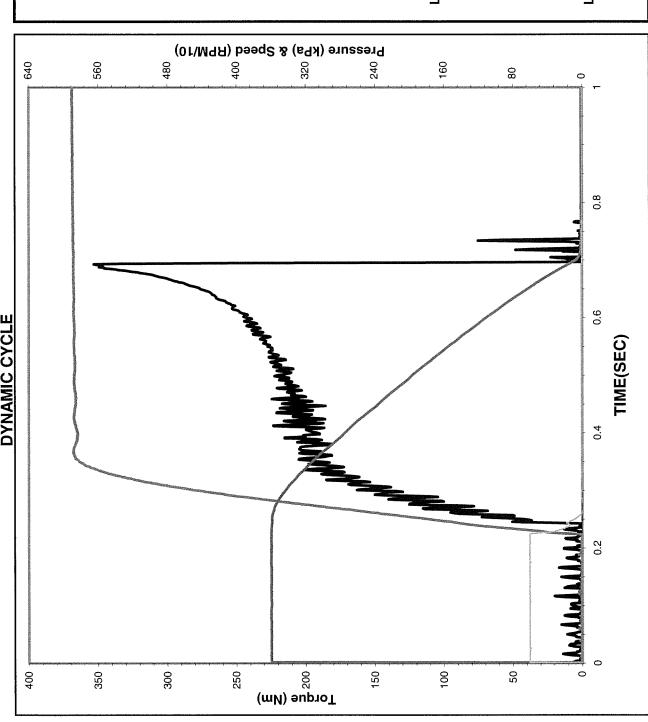
587 kPa (586 ± 7 KPa) 0.13 Sec (0.15 ± 0.02 Sec) Apply Pressure: Apply Rate:

18.6 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ **0.488 Sec** Engage Time:

Torque

199 N*m 0.2 Sec Dyn: Midpoint Dyn:


202 N*m 344 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

0.097 0.098 0.167

Date of Test: 1/27/2014

Time of Test: 18:15:43

Test Number: C2-7-1615

Fluid Code: LO292039

Cycle Number:

91.9 °C Temperature:

(93.3 ± 3.0 °C) **586 kPa** Apply Pressure:

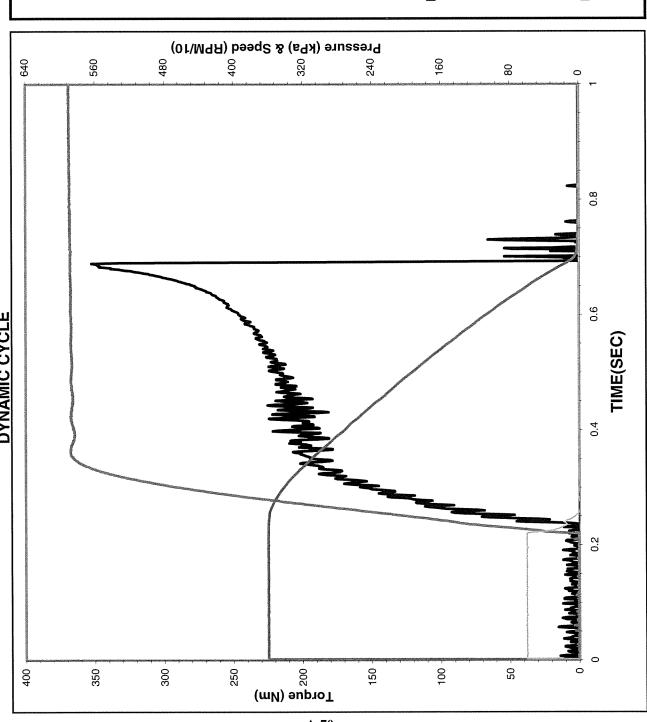
(586 ± 7 KPa)

0.13 Sec (0.15 ± 0.02 Sec) 18.6 KJ Apply Rate:

Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.472 Sec Engage Time:

Torque


204 N*m 210 N*m 0.2 Sec Dyn: Midpoint Dyn:

355 N*m LwSpd Dynamic:

Coefficient of Friction

0.099 0.102 0.173 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Date of Test: 1/27/2014 Time of Test: 18:15:58 Test Number: C2-7-1615

200 Fluid Code: LO292039 Cycle Number:

(0° 0.8 ± 8.8) 92.2 °C Temperature:

Apply Pressure:

586 kPa (586 ± 7 KPa) 0.13 Sec (0.15 ± 0.02 Sec) Apply Rate:

18.6 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.472 Sec Engage Time:

Torque

0.2 Sec Dyn: Midpoint Dyn:

208 N*m 210 N*m 355 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.101 0.102 0.173 LwSpd Dynamic:

Date of Test: 1/27/2014 Time of Test: 18:16:29 Test Number: C2-7-1615 Fluid Code: LO292039

501 Cycle Number:

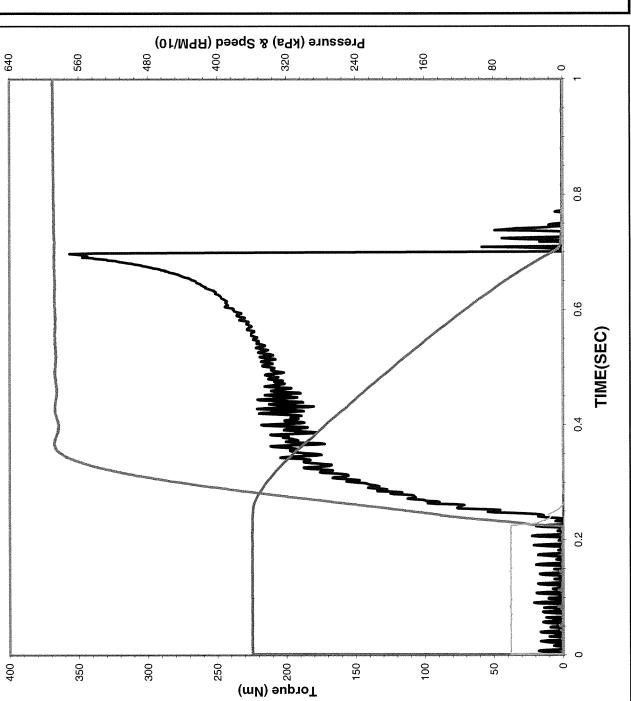
(93.3 ± 3.0 °C) 85.9 °C Temperature:

(586 ± 7 KPa) 0.13 Sec 586 kPa Apply Rate: Apply Pressure:

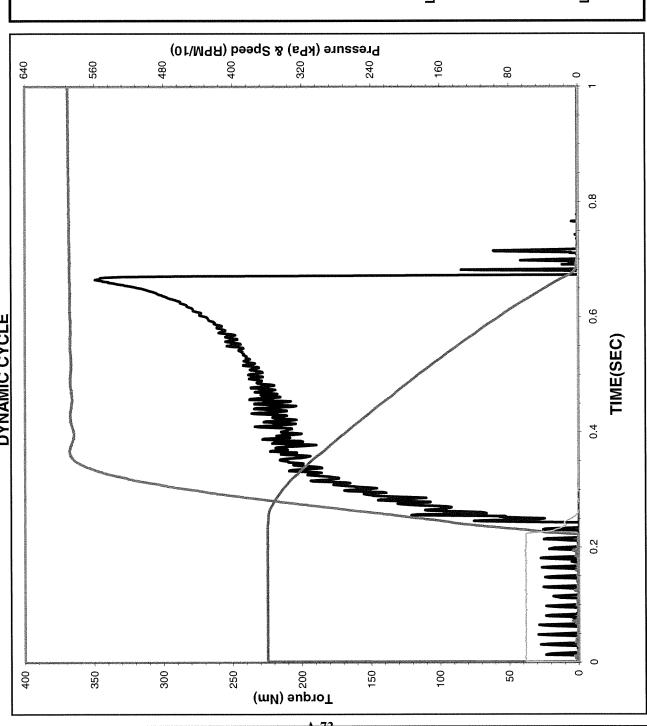
 $(0.15 \pm 0.02 \text{ Sec})$ 18.6 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.476 Sec Engage Time:

Torque


0.2 Sec Dyn: Midpoint Dyn:

204 N*m 207 N*m 359 N*m LwSpd Dynamic:


Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.100 0.101 0.175 LwSpd Dynamic:

Date of Test: 1/27/2014 Time of Test: 20:20:59 Test Number: C2-7-1615 Fluid Code: LO292039

Cycle Number:

(0° 0.8 ± 8.8) 91.6 °C Temperature:

586 kPa Apply Pressure:

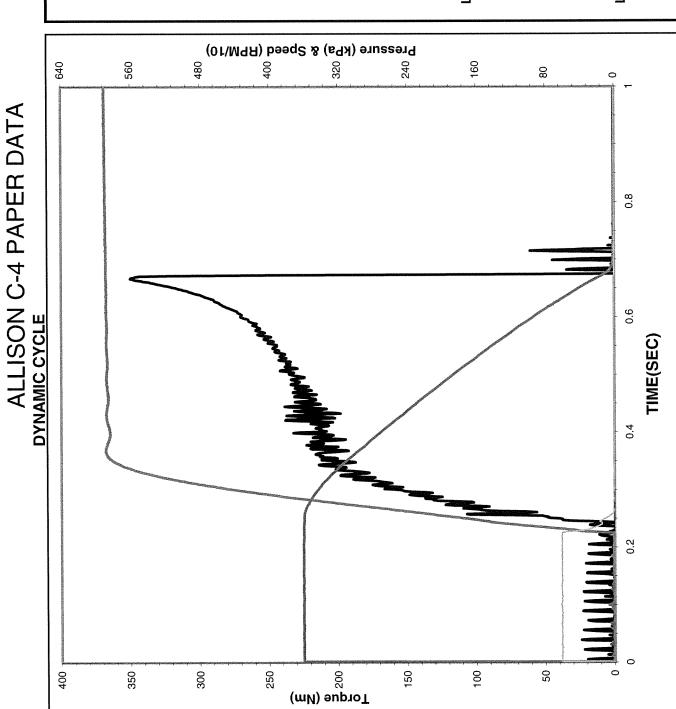
(586 ± 7 KPa) **0.13 Sec** Apply Rate:

 $0.15 \pm 0.02 \, \mathrm{Sec}$ 18.7 KJ

 $(18.7 \pm 0.40 \text{ KJ})$ **0.449 Sec** Engage Time:

Torque

221 N*m 224 N*m 344 N*m 0.2 Sec Dyn: Midpoint Dyn:


LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.107 0.109 0.168 LwSpd Dynamic:

Date of Test: 1/27/2014

Test Number: C2-7-1615 Time of Test: 20:21:14

Fluid Code: L0292039

91.5 °C Cycle Number: Temperature:

(93.3 ± 3.0 °C) 586 kPa Apply Pressure:

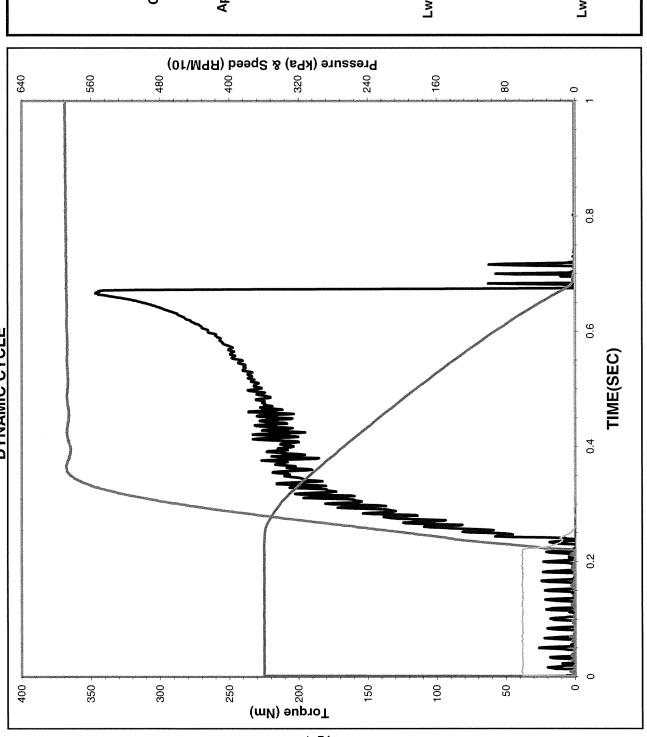
(586 ± 7 KPa) Apply Rate:

0.13 Sec (0.15 ± 0.02 Sec) 18.7 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ **0.449 Sec Engage Time:**

221 N*m 0.2 Sec Dyn: Midpoint Dyn:

224 N*m 346 N*m LwSpd Dynamic:


Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.108 0.109 0.168 LwSpd Dynamic:

Date of Test: 1/27/2014 Time of Test: 20:21:46 Fluid Code: L0292039

Test Number: C2-7-1615

1001 Cycle Number:

(93.3 ± 3.0 °C) 586 kPa 85.3 °C Temperature: Apply Pressure:

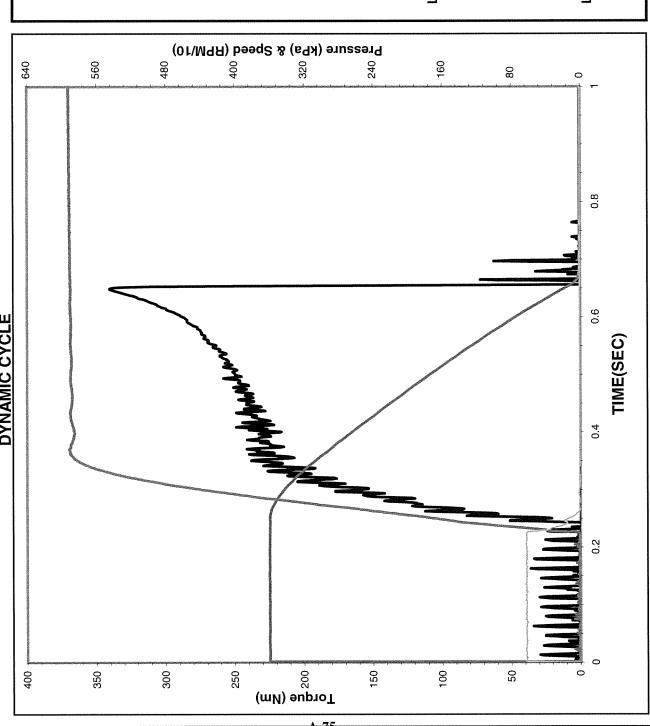
(586 ± 7 KPa) **0.13 Sec** (0.15 ± 0.02 Sec) Apply Rate:

18.7 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.453 Sec

Engage Time:

0.2 Sec Dyn: Midpoint Dyn:


216 N*m 221 N*m 343 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.105 0.107 0.167 LwSpd Dynamic:

Date of Test: 1/28/2014

Time of Test: 2:36:16

Test Number: C2-7-1615

Fluid Code: LO292039

2499 Cycle Number: 92.2 °C Temperature:

(93.3 ± 3.0 °C) 588 kPa Apply Pressure:

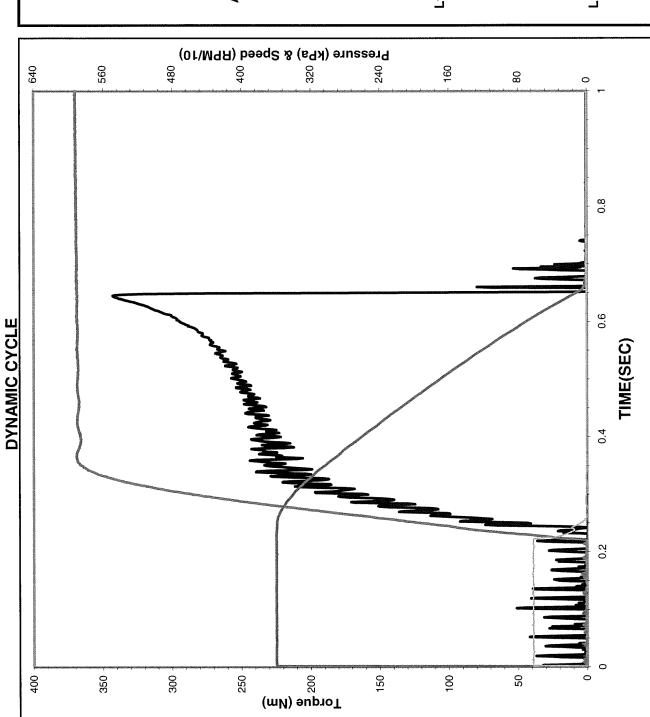
(586 ± 7 KPa) **0.13 Sec** (0.15 ± 0.02 Sec) Apply Rate:

18.7 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ **0.429 Sec** Engage Time:

Torque

238 N*m 239 N*m 333 N*m 0.2 Sec Dyn: Midpoint Dyn:


LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.116 0.117 0.162 LwSpd Dynamic:

Date of Test: 1/28/2014

Time of Test: 2:36:31

Test Number: C2-7-1615

Fluid Code: LO292039

2500 Cycle Number:

(93.3 ± 3.0 °C) 92.2 °C Temperature:

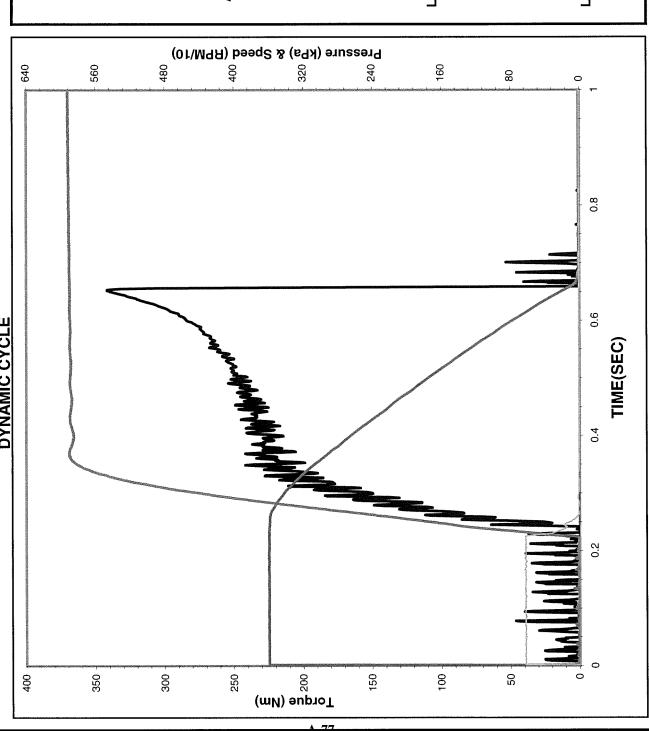
(586 ± 7 KPa) 588 kPa Apply Pressure:

0.14 Sec (0.15 ± 0.02 Sec) Apply Rate:

18.7 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.428 Sec Engage Time:

238 N*m 0.2 Sec Dyn: Midpoint Dyn:


240 N*m 338 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.116 0.117 0.164 LwSpd Dynamic:

Date of Test: 1/28/2014

Time of Test: 2:37:02

Fluid Code: LO292039

Test Number: C2-7-1615

2501 Cycle Number:

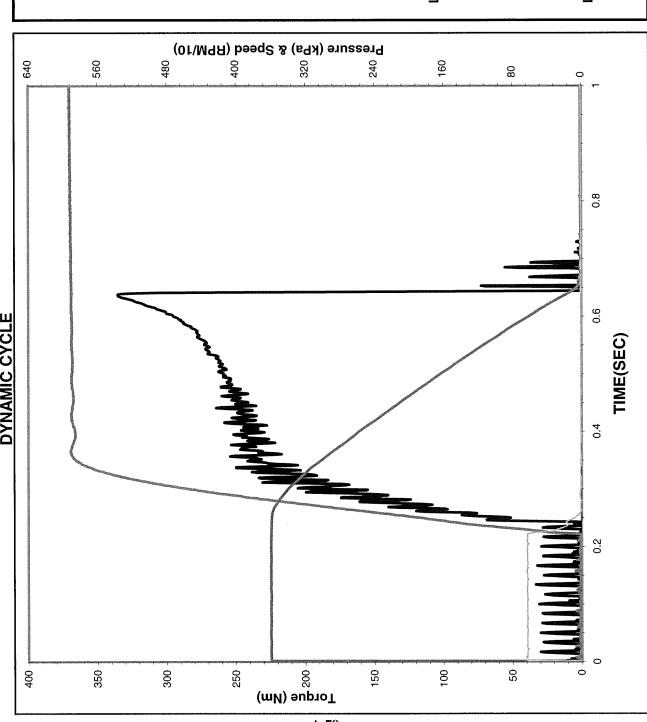
(93.3 ± 3.0 °C) 588 kPa 86.4 °C Temperature: Apply Pressure:

(586 ± 7 KPa) **0.13 Sec** Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$

18.7 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ **0.433 Sec** Engage Time:


235 N*m 236 N*m 333 N*m 0.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.115 0.115 0.162 LwSpd Dynamic:

Date of Test: 1/28/2014

Time of Test: 13:01:32

Fluid Code: LO292039

Test Number: C2-7-1615

Cycle Number:

92.6 °C Temperature:

(93.3 ± 3.0 °C) **588 kPa** (586 ± 7 KPa) Apply Pressure:

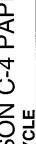
0.13 Sec (0.15 ± 0.02 Sec) Apply Rate:

18.7 KJ Energy:

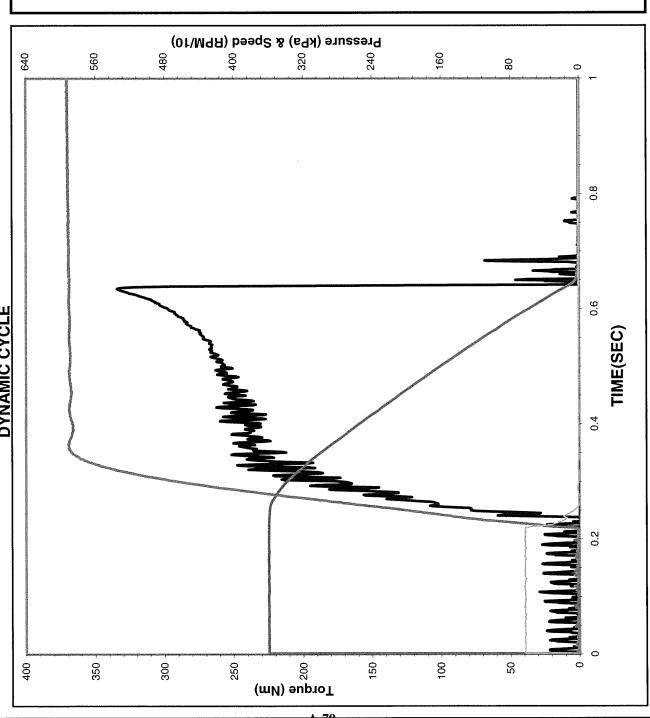
 $(18.7 \pm 0.40 \text{ KJ})$ **0.421 Sec** Engage Time:

Torque

246 N*m 0.2 Sec Dyn: Midpoint Dyn:


247 N*m 328 N*m LwSpd Dynamic:

Coefficient of Friction


.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

0.120 0.120 0.160

Date of Test: 1/28/2014

Time of Test: 13:01:47

Fluid Code: LO292039

Test Number: C2-7-1615

5000 Cycle Number:

(93.3 ± 3.0 °C) 92.6 °C Temperature:

588 kPa Apply Pressure:

(586 ± 7 KPa) 0.13 Sec (0.15 ± 0.02 Sec) 18.8 KJ Apply Rate:

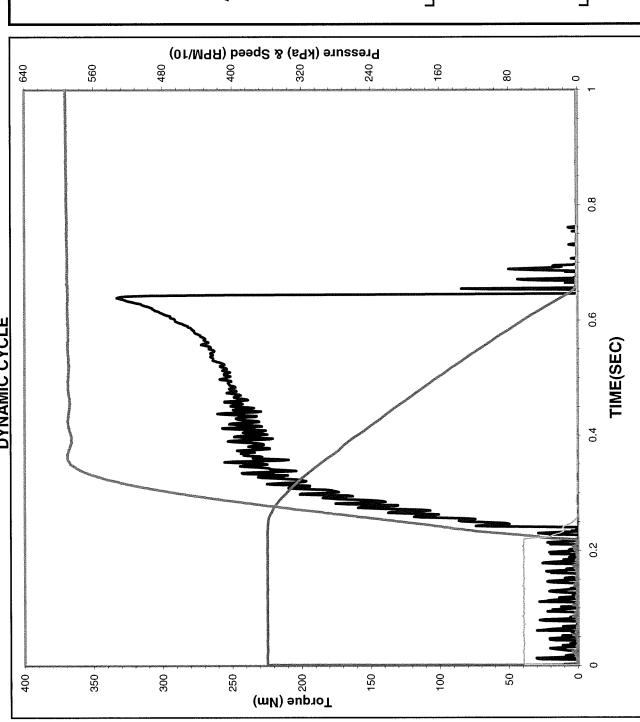
Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ **0.421 Sec** Engage Time:

Torque

246 N*m 247 N*m 323 N*m 0.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:


Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.120 0.120 0.157 LwSpd Dynamic:

Date of Test: 1/28/2014 Time of Test: 13:02:18 Test Number: C2-7-1615 Fluid Code: LO292039

85.8 °C 5001 Cycle Number: Temperature:

588 kPa (586 ± 7 KPa) 0.14 Sec $(93.3 \pm 3.0 \, ^{\circ}\text{C})$ Apply Pressure:

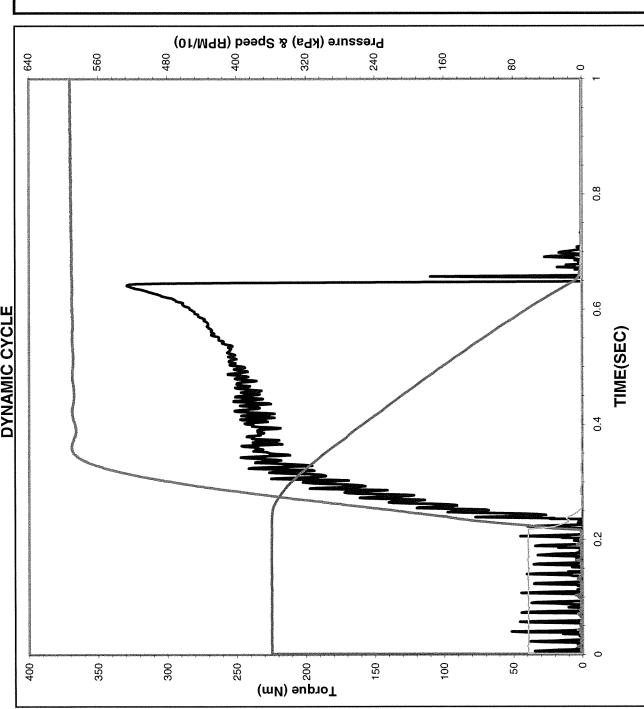
Apply Rate:

 $(0.15 \pm 0.02 \text{ Sec})$ 18.7 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.426 Sec Engage Time:

Torque

0.2 Sec Dyn: Midpoint Dyn:


242 N*m 243 N*m 327 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.118 0.119 0.159 LwSpd Dynamic:

Date of Test: 1/28/2014

Time of Test: 23:26:48

Test Number: C2-7-1615

Fluid Code: LO292039

7499 Cycle Number:

(93.3 ± 3.0 °C) 92.4 °C Temperature:

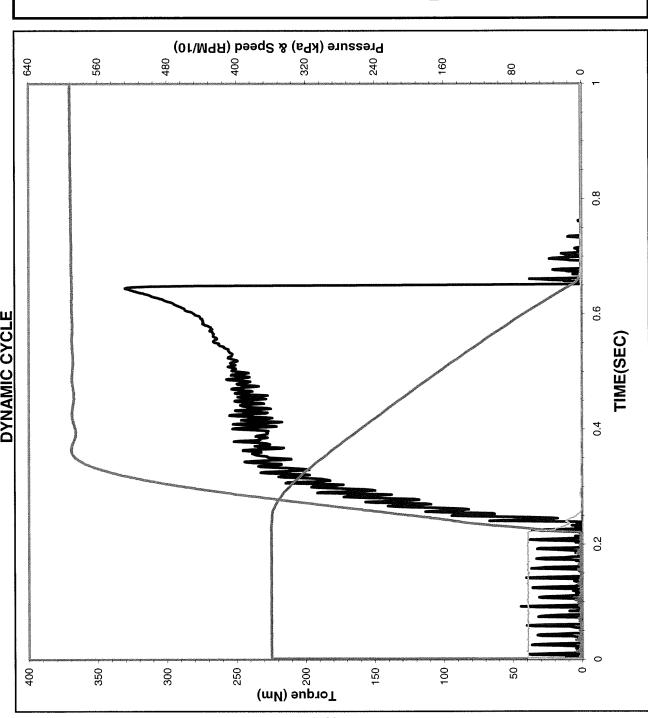
588 kPa Apply Pressure:

(586 ± 7 KPa) 0.13 Sec (0.15 ± 0.02 Sec) 18.7 KJ Apply Rate:

Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ **0.43 Sec** Engage Time:

0.2 Sec Dyn: Midpoint Dyn:


239 N*m 241 N*m 324 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.116 0.117 0.158 LwSpd Dynamic:

Date of Test: 1/28/2014

Time of Test: 23:27:03

Fluid Code: LO292039

Test Number: C2-7-1615

7500 Cycle Number: 92.6 °C

Temperature:

(93.3 ± 3.0 °C) Apply Pressure:

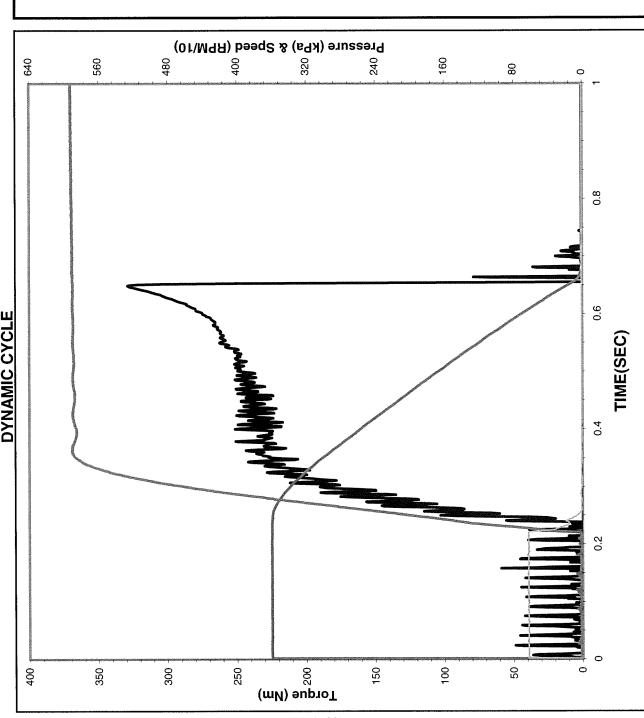
588 kPa (586 ± 7 KPa) 0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \text{ Sec})$ 18.7 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ **0.43 Sec** Engage Time:

Torque

0.2 Sec Dyn: Midpoint Dyn:


240 N*m 240 N*m 326 N*m LwSpd Dynamic:

Coefficient of Friction

0.117 .2 Sec Dyn: Midpoint Dyn:

0.117 LwSpd Dynamic:

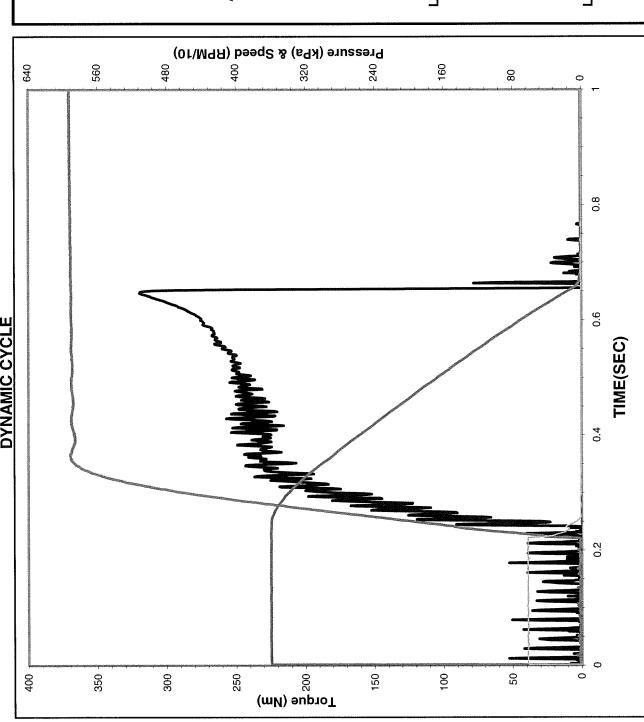
Date of Test: 1/28/2014 Time of Test: 23:27:34 Test Number: C2-7-1615 Fluid Code: LO292039 7501 Cycle Number: 86.4 °C Temperature:

(93.3 ± 3.0 °C) **588 kPa** (586 ± 7 KPa) 0.13 Sec Apply Rate: Apply Pressure:

 $(0.15 \pm 0.02 \text{ Sec})$ 18.7 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.434 Sec Engage Time:

0.2 Sec Dyn: Midpoint Dyn:


237 N*m 237 N*m 323 N*m LwSpd Dynamic:

Coefficient of Friction

0.115 0.116 0.157 .2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

Date of Test: 1/29/2014

Time of Test: 9:51:50

Fluid Code: LO292039

Test Number: C2-7-1615

8666 Cycle Number:

(93.3 ± 3.0 °C) 92.3 °C Temperature:

588 kPa (586 ± 7 KPa) 0.13 Sec (0.15 ± 0.02 Sec) Apply Pressure:

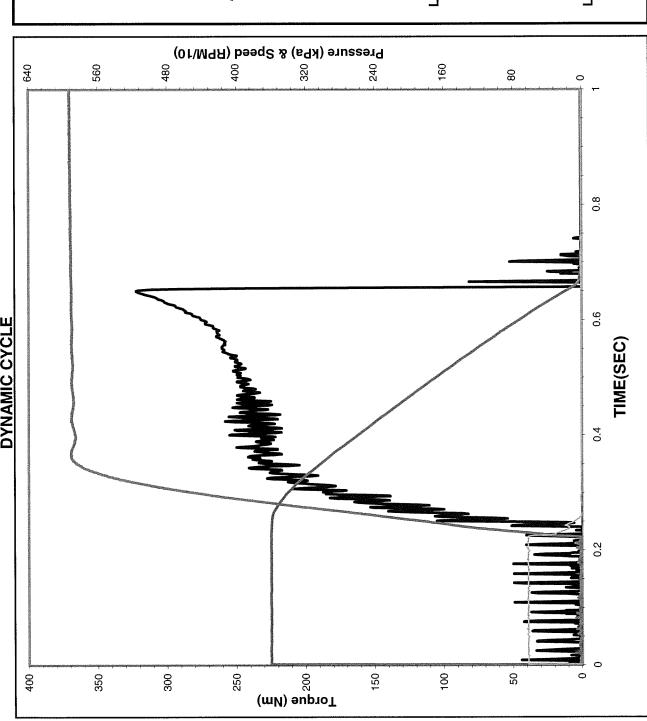
Apply Rate:

18.7 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ **0.433 Sec** Engage Time:

Torque

0.2 Sec Dyn: Midpoint Dyn:


238 N*m 239 N*m 311 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

0.116 0.116 0.152

Date of Test: 1/29/2014

Time of Test: 9:52:05

Test Number: C2-7-1615

Fluid Code: LO292039

6666 Cycle Number: (93.3 ± 3.0 °C) **588 kPa** (586 ± 7 KPa) **0.13 Sec** Apply Pressure:

91.9 °C

Temperature:

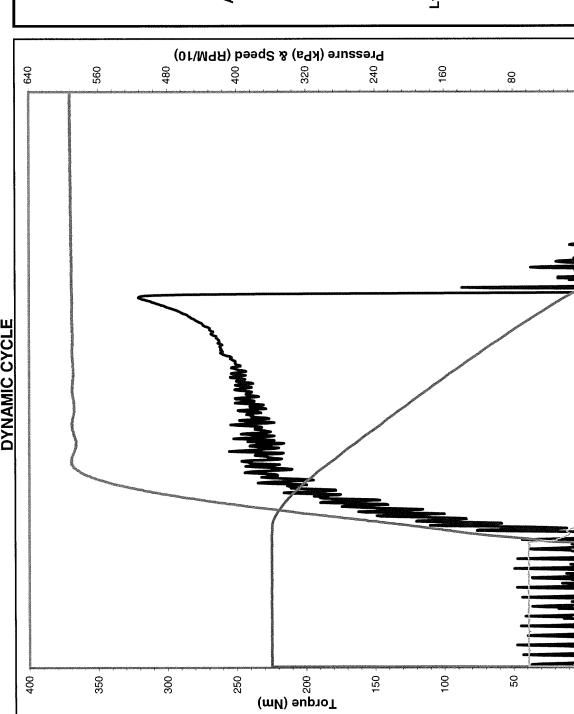
Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 18.7 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ **0.433 Sec** Engage Time:

Torque

240 N*m 239 N*m 313 N*m 0.2 Sec Dyn: Midpoint Dyn:


LwSpd Dynamic:

Coefficient of Friction

0.117 0.117 0.152 .2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

Date of Test: 1/29/2014

Time of Test: 9:52:20

Test Number: C2-7-1615 Fluid Code: LO292039 10000 Cycle Number:

(93.3 ± 3.0 °C) **588 kPa** 91.6 °C Temperature:

(586 ± 7 KPa) Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ 0.13 Sec 18.7 KJ Energy: Apply Rate:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.434 Sec Engage Time:

Torque

237 N*m 0.2 Sec Dyn: Midpoint Dyn:

238 N*m 310 N*m LwSpd Dynamic:

Coefficient of Friction

0.116

.2 Sec Dyn: Midpoint Dyn:

0.116 LwSpd Dynamic:

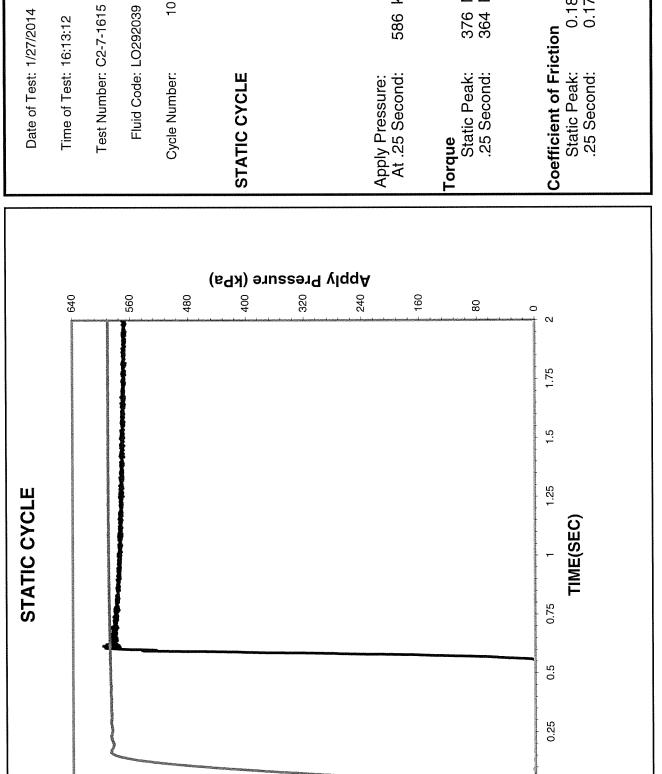
TIME(SEC)

0.2

STATIC TRACES

ALLISON C-4 PAPER DATA

400


350

300

250

9

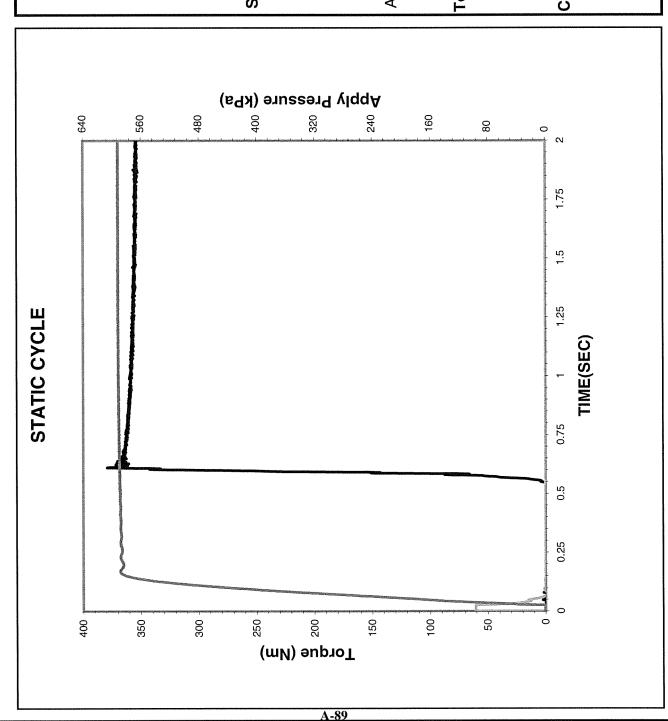
500

Torque (Mm)

150

376 Nm 364 Nm

50


100

0.183

586 kPa

ALLISON C-4 PAPER DATA

Date of Test: 1/27/2014

Test Number: C2-7-1615 Time of Test: 16:35:58

Fluid Code: LO292039

Cycle Number:

100

STATIC CYCLE

Apply Pressure: At .25 Second:

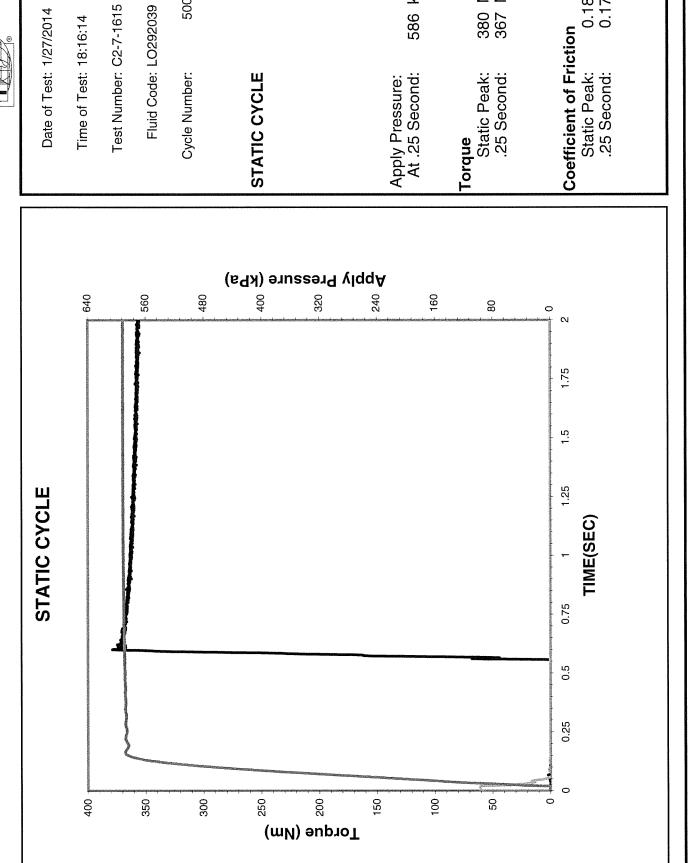
587 kPa **Torque** Static Peak: .25 Second:

380 Nm 362 Nm

Coefficient of Friction

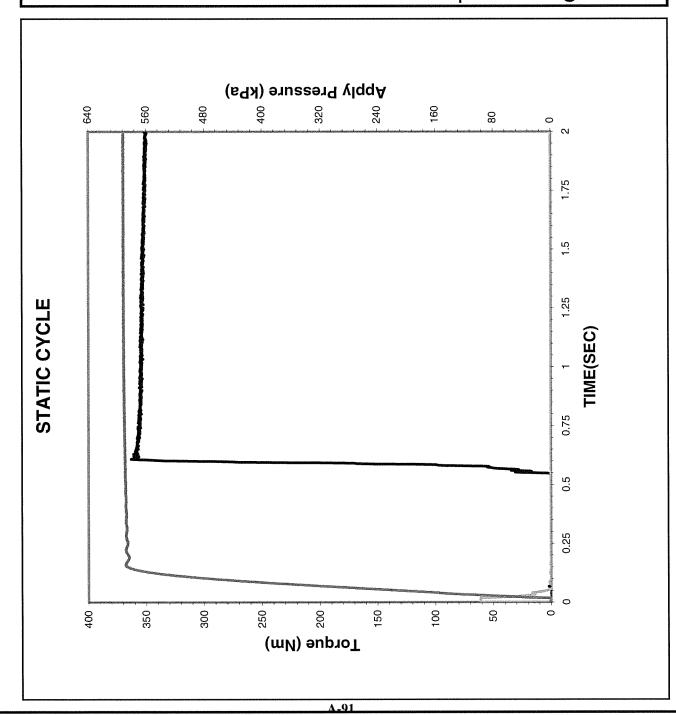
Static Peak: .25 Second:

380 Nm 367 Nm


586 kPa

ALLISON C-4 PAPER DATA

500


Fluid Code: LO292039

A-90

ALLISON C-4 PAPER DATA

Date of Test: 1/27/2014

Time of Test: 20:21:30

Test Number: C2-7-1615 Fluid Code: LO292039

Cycle Number:

1000

STATIC CYCLE

Apply Pressure: At .25 Second:

586 kPa **Torque** Static Peak: .25 Second:

364 Nm 358 Nm

Coefficient of Friction

0.177 0.174 Static Peak: .25 Second:

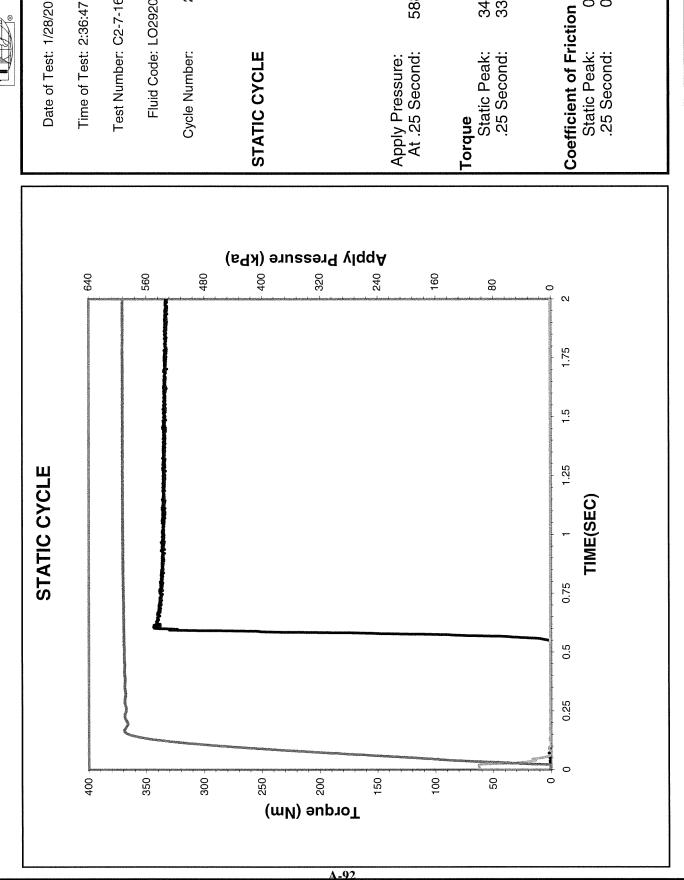
344 Nm 338 Nm

Static Peak: .25 Second:

588 kPa

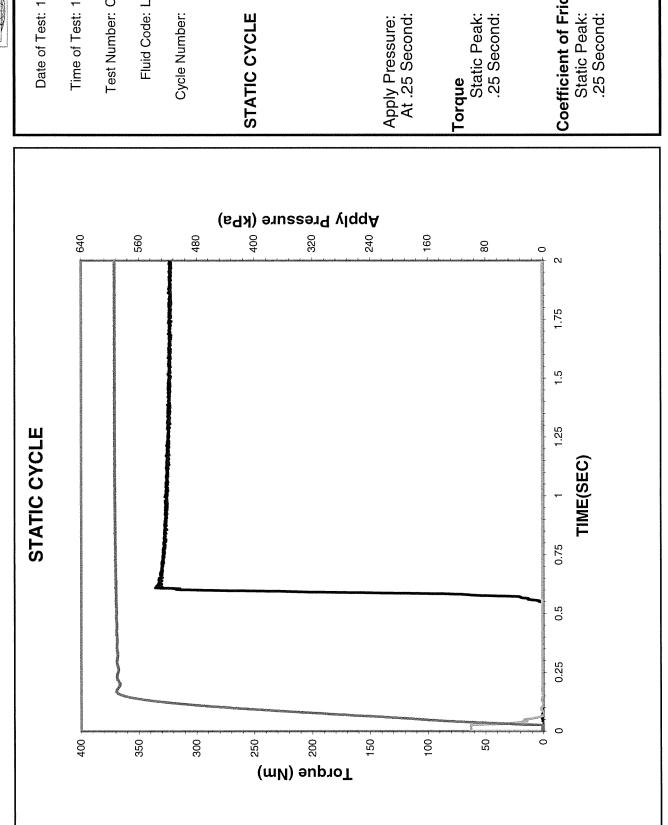
ALLISON C-4 PAPER DATA

Date of Test: 1/28/2014


Time of Test: 2:36:47

2500

Cycle Number:


Test Number: C2-7-1615

Fluid Code: LO292039

ALLISON C-4 PAPER DATA

Date of Test: 1/28/2014

Time of Test: 13:02:03

Test Number: C2-7-1615 Fluid Code: LO292039

Cycle Number:

5000

STATIC CYCLE

Apply Pressure: At .25 Second:

588 kPa

337 Nm 328 Nm

Coefficient of Friction

0.164 0.160 Static Peak: .25 Second:

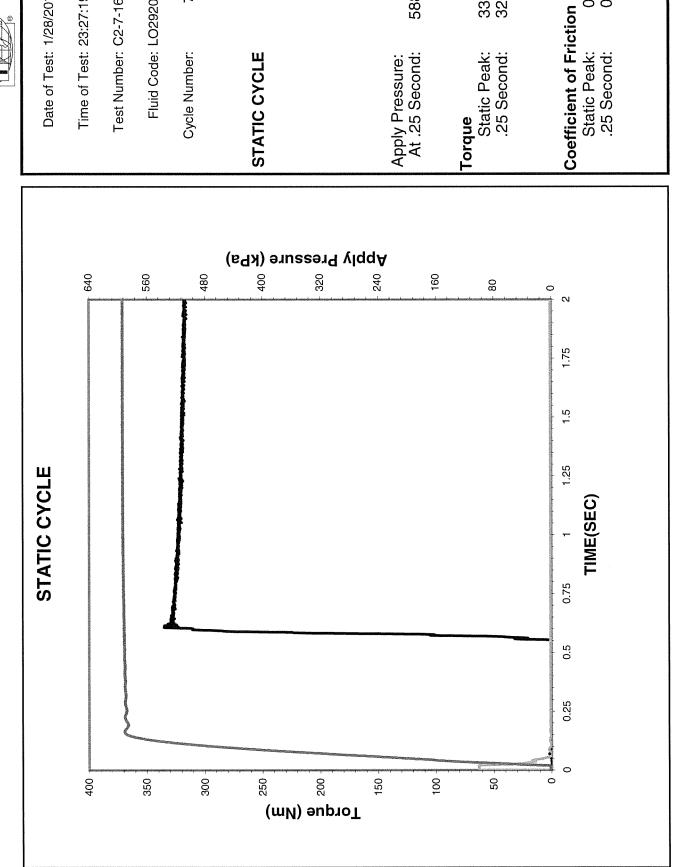
C4 Reports Version 1.0.8.2

336 Nm 325 Nm

588 kPa

ALLISON C-4 PAPER DATA

Date of Test: 1/28/2014


Time of Test: 23:27:19

7500

Cycle Number:

Test Number: C2-7-1615

Fluid Code: LO292039

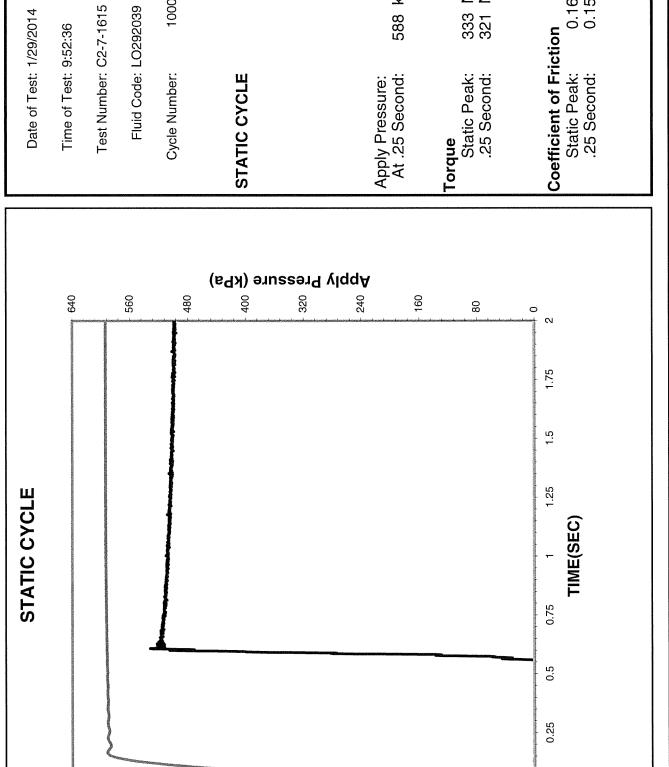
ALLISON C-4 PAPER DATA

10000

300

400

350


250

200

A-95

Torque (Nm)

150

100

20

333 Nm 321 Nm

588 kPa

SOUTHWEST RESEARCH INSTITUTE® San Antonio, Texas

Fuels and Lubricants Research Division

Report on

CATERPILLAR TO-4 FRICTION PROPERTIES, VC-70 SEQUENCE 1220 ONLY

Conducted for

ARMY LAB

Oil Code: **LO292039**

Test Number: A-109-I

February 11, 2014

Brian Koehler
Principal Engineer
Specialty & Driveline Fluid Evaluation

Submitted by:

The results of this report relate only to the fluid tested.

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute®.

Page 1 of 7

CATERPILLAR TO-4 FRICTION PROPERTIES, VC-70 Summary Sheet

Company:	ARMY LAB						
Test start date: End of test date: Oil Code:	2/11/2014 2/11/2014 LO292039						
Sequence Number	1219	1220	1221	1222	1223	1224	Friction Retention
Dynamic Coefficient Vs. Cycle:		F		***************************************	***************************************		
Dynamic Coefficient Vs. Load:		F	***************************************				
Dynamic Coefficient Vs. Speed:		F					
Energy Limit:		Р		***************************************	***************************************	***************************************	
Static Coefficient Vs. Load:		P					
Static Coefficient Vs. Speed:		<u> </u>					
Energy Limit:		P					
Total Wear:		0.020					
Wear Limit:	0.030	0.040	0.070	0.070	0.070	0.040	
Comments: The results are compa	This testing water		on a referer	nced test sta	nd using 200	9 batch part	S.

F = Fail

P = Pass

N/A = Not Applicable

Test name: Test date: A-109-I 2/11/2014

Test description:

Oil type:

LO292039 SAE 30

Viscosity:

Miscellaneous: Software version:

3.12

Run name & desc:

A-109-I 2/11/2014

Run date:

82

Oil temperature:
Oil flow rate:

4

Operator: Remarks:

Sequence name:

1220

Remarks:

Number of cylces run:

977

Machine:

1131

Coast down check run:

Result:(sec) Inertia check run: Result(n·m·s²):

Disc name & desc:

1Y0709

Material:

SINTERED BRONZE

Groove pattern:

Miscellaneous:

Outer diameter(mm):

285.8008

Inner diameter(mm):
Mean radius(mm):

223.19996 128.2100001

Batch Number:

007080C800012

Remarks:

Plate Name & desc:

8E4095

Surface:

8.0

Miscellaneous:

Batch Number:

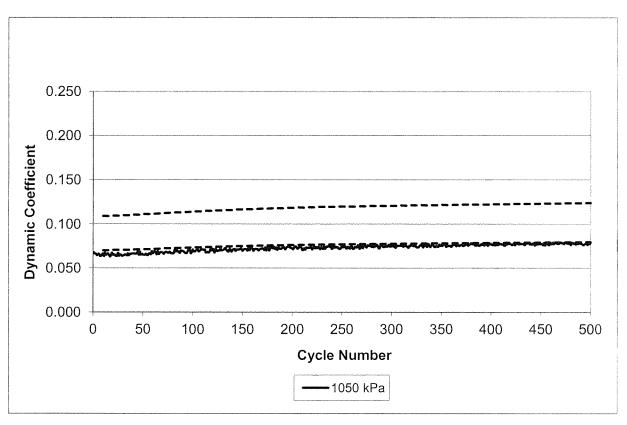
007080C800012

Remarks:

Report limit name:

R-004-I

Limit file generated:


8/22/2012

Report format name:

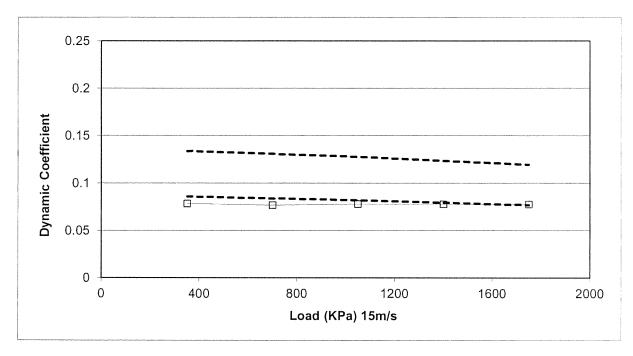
REP1220 - SINTERED BRONZE

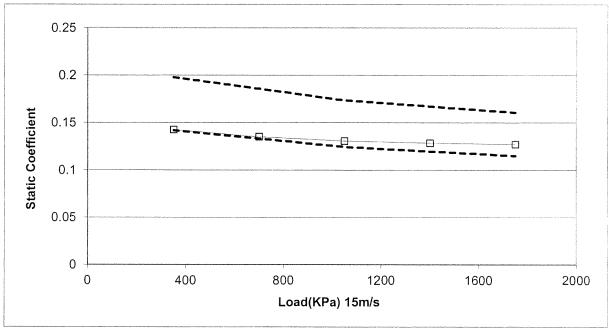
Test: A-109-I Run: A-109-I

Started on: 2/11/2014 at 07:29:39

Wear Measurements Thickness

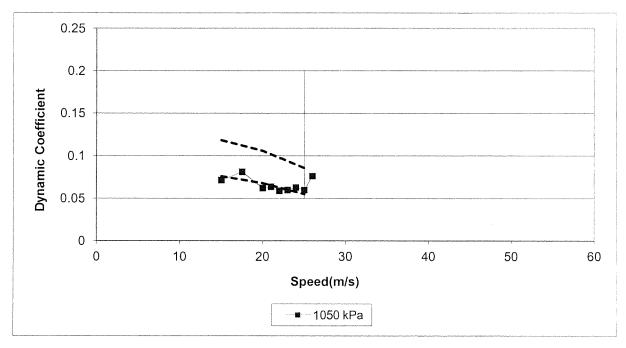
	Outer Diameter			Ir	Inner Diameter			
Location	M1	M2	M3	M1	M2	M3		
[]	4.99	4.97	4.97	4.98	4.97	4.97		
Т	4.98	4.97	4.96	4.98	4.97	4.96		
+	4.99	4.97	4.97	4.99	4.98	4.97		
Χ	4.98	4.97	4.96	4.98	4.97	4.96		
Υ	4.99	4.99	4.97	4.99	4.99	4.97		
Z	4.98	4.97	4.96	4.96	4.96	4.95		
Average	4.99	4.97	4.97	4.98	4.97	4.96		

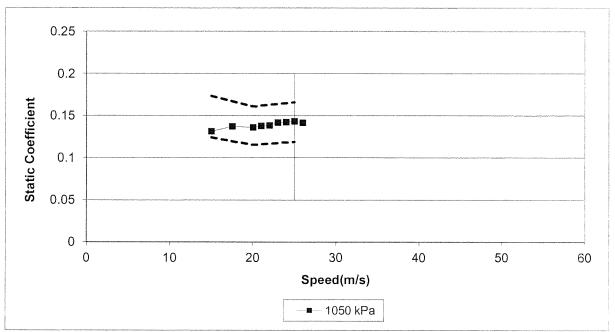

M1-M2 Compression set average wear: 0.012

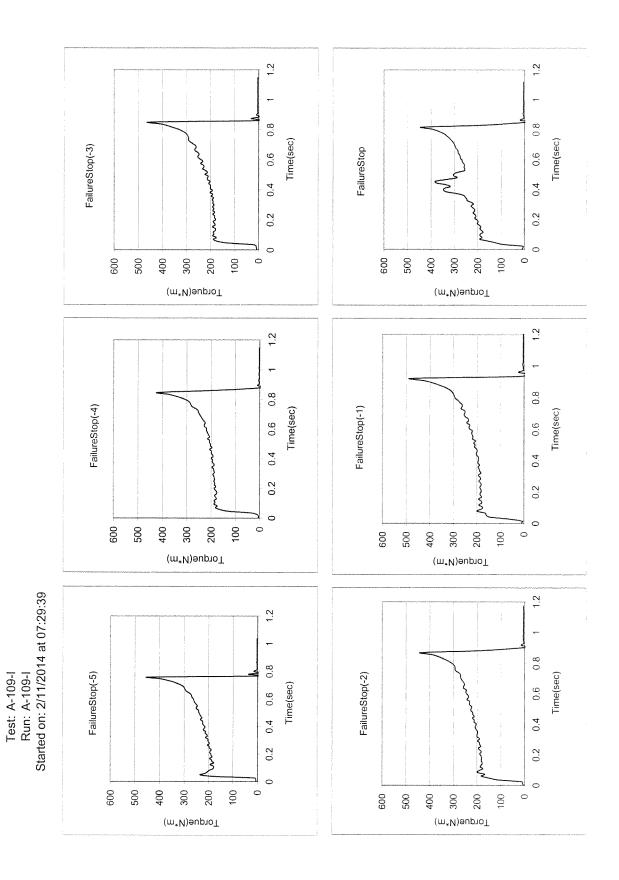

M2-M3 average Wear: 0.008

Total Wear(all measurements in mm): 0.020

Test: A-109-I Run: A-109-I


Started on: 2/11/2014 at 07:29:39





Test: A-109-I Run: A-109-I

Started on: 2/11/2014 at 07:29:39

A-102 Page 7 of 7

SOUTHWEST RESEARCH INSTITUTE® San Antonio, Texas

Fuels and Lubricants Research Division

Report on

CATERPILLAR TO-4 FRICTION PROPERTIES, VC-70 SEQUENCE 1222 ONLY

Conducted for

ARMY LAB

Oil Code: **LO292039**

Test Number: A-110-I

February 12, 2014

Brian Koehler
Principal Engineer
Specialty & Driveline Fluid Evaluation

Submitted by:

The results of this report relate only to the fluid tested.

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute®.

CATERPILLAR TO-4 FRICTION PROPERTIES, VC-70 Summary Sheet

Company:	ARMY LAB						
Test start date: End of test date: Oil Code:	2/12/2014 2/12/2014 LO292039						
Sequence Number	1219	1220	1221	1222	1223	1224	Friction Retention
Dynamic Coefficient Vs. Cycle:			-	Р	***************************************	WASHINGTON TO THE PROPERTY OF THE PARTY OF T	
Dynamic Coefficient Vs. Load:			www.w.d.w.ide	<u> </u>			
Dynamic Coefficient Vs. Speed:				P			
Energy Limit:		***************************************		P	Market Market Baseline Control		
Static Coefficient Vs. Load:				<u>P</u>		***	
Static Coefficient Vs. Speed:				P			
Energy Limit:				Р			
Total Wear:			-	0.033			
Wear Limit:	0.030	0.040	0.070	0.070	0.070	0.040	
Comments: The results are compa	This testing warred to TO-4 testi		on a referer	ced test sta	nd using 200	9 batch part	S.

F = Fail

P = Pass

N/A = Not Applicable

Test name: A-110-I Test date: 2/12/2014

Test description:

Oil type: LO292039 Viscosity: SAE 30

Miscellaneous:

Software version: 3.12

Run name & desc: A-110-I Run date: 2/12/2014

Oil temperature: 82
Oil flow rate: 4

Operator: Remarks:

Sequence name: 1222

Remarks:

Number of cylces run: 1072

Machine: 1131

Coast down check run:

Result:(sec) Inertia check run: Result(n·m·s²):

Disc name & desc: 1Y0711

Material: WHEEL BRAKE PAPER

Groove pattern:

Miscellaneous:

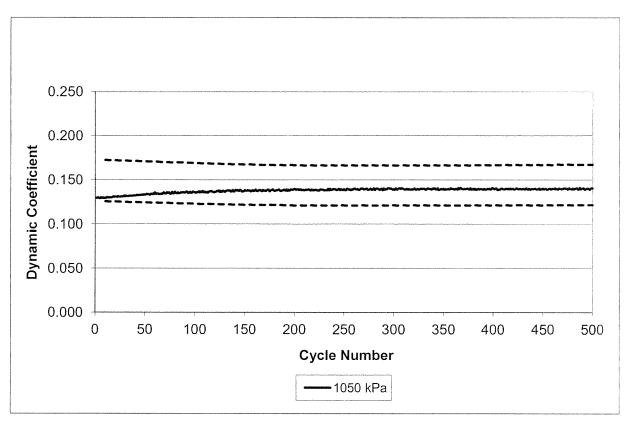
Outer diameter(mm): 285.8008 Inner diameter(mm): 223.19996 Mean radius(mm): 128.2100001 Batch Number: 06MR928188

Remarks:

Plate Name & desc: 1Y0726 Surface: 0.27

Miscellaneous:

Batch Number: 06MR928188


Remarks:

Report limit name: R-005-I Limit file generated: 8/24/2012

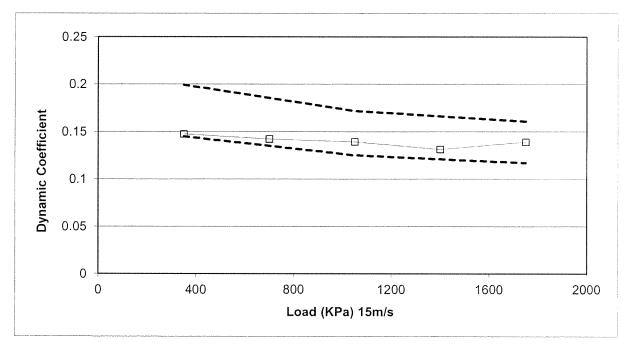
Report format name: REP1222 - WHEEL BRAKE PAPER

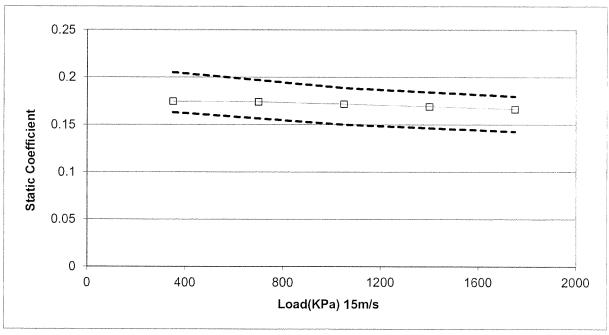
Test: A-110-I Run: A-110-I

Started on: 2/12/2014 at 07:35:35

Wear Measurements Thickness

	0	uter Diame	ter	lnı	ner Diamet	er
Location	M1	M2	M3	M1	M2	M3
11	5.00	4.97	4.96	4.99	4.96	4.96
. T	4.99	4.96	4.96	4.99	4.96	4.95
+ '	4.97	4.95	4.94	4.97	4.95	4.94
X	4.98	4.95	4.94	4.97	4.94	4.94
Υ	4.99	4.96	4.96	4.99	4.96	4.96
Z	4.99	4.96	4.96	4.99	4.96	4.96
Average	4.99	4.96	4.95	4.98	4.95	4.95

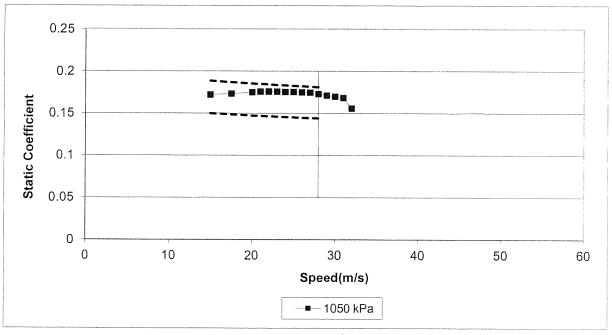

M1-M2 Compression set average wear: 0.028

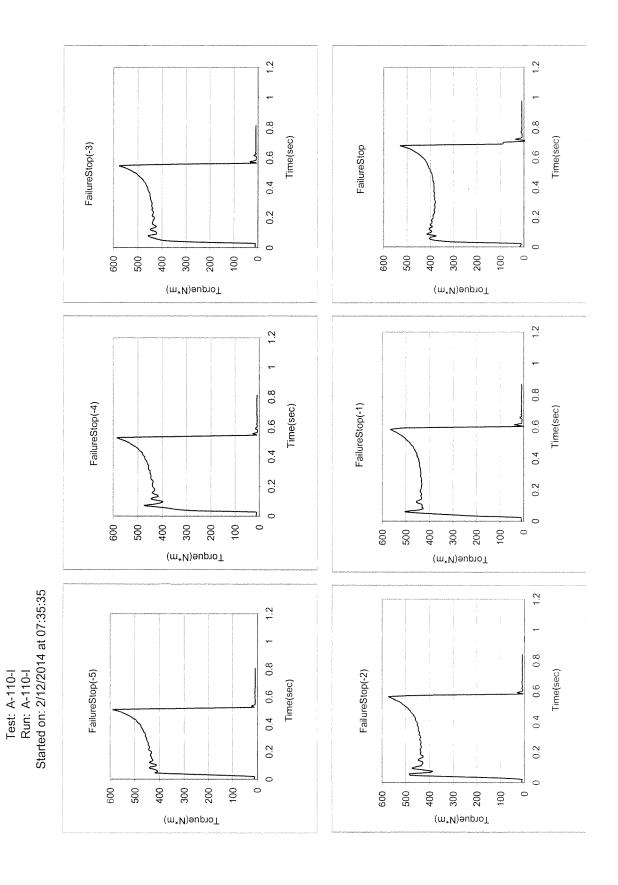

M2-M3 average Wear: 0.005

Total Wear(all measurements in mm): 0.033

Test: A-110-I Run: A-110-I


Started on: 2/12/2014 at 07:35:35





Test: A-110-I Run: A-110-I

Started on: 2/12/2014 at 07:35:35

SOUTHWEST RESEARCH INSTITUTE® San Antonio, Texas

Fuels and Lubricants Research Division

Report on

CATERPILLAR TO-4 FRICTION PROPERTIES, VC-70 FRRET SEQUENCE ONLY

Conducted for

ARMY LAB

Oil Code: **LO292039**

Test Number: A-111-I

February 18, 2014

Brian Koehler Principal Engineer

Submitted by:

Specialty & Driveline Fluid Evaluation

The results of this report relate only to the fluid tested.

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute®.

CATERPILLAR TO-4 FRICTION PROPERTIES, VC-70 Summary Sheet

Company:	ARMY LAB						
Test start date: End of test date: Oil Code:	2/14/2014 2/18/2014 LO292039						
Sequence Number	1219	1220	1221	1222	1223	1224	Friction Retention
Dynamic Coefficient Vs. Cycle:							F
Dynamic Coefficient Vs. Load:							
Dynamic Coefficient Vs. Speed:							
Energy Limit:							
Static Coefficient Vs. Load:							
Static Coefficient Vs. Speed:							
Energy Limit:							
Total Wear:				•			
Wear Limit:	0.030	0.040	0.070	0.070	0.070	0.040	
Comments: The results are compa	This testing wa		on a referen	ced test star	nd using 200	9 batch parts	S.
This test is a fail becar	use a small amou	nt of dynamic	data was belo	w the lower l	imit line.		
						#1505#300000 - MM1 107V	

F = Fail

P = Pass

N/A = Not Applicable

Test name: Test date: A-111-l 2/13/2014

Test description:

Oil type: Viscosity: LO292039 SAE 30

Miscellaneous:

Software version: 3.12

Run name & desc:

A-111-I 2/13/2014

Oil temperature:

82

Oil flow rate: Operator:

Run date:

4

Remarks:

Sequence name:

FRRET

Remarks:

Number of cylces run:

25100

Machine:

1131

Coast down check run:

Result:(sec)
Inertia check run:
Result(n·m·s²):

Disc name & desc:

1Y0709

Material:

SINTERED BRONZE

Groove pattern:

Miscellaneous:

285.8008

Outer diameter(mm): Inner diameter(mm): Mean radius(mm):

223.19996 128.2100001

Batch Number:

0071380C00012

Remarks:

Plate Name & desc:

1Y0726

Surface:

0.29

Miscellaneous:

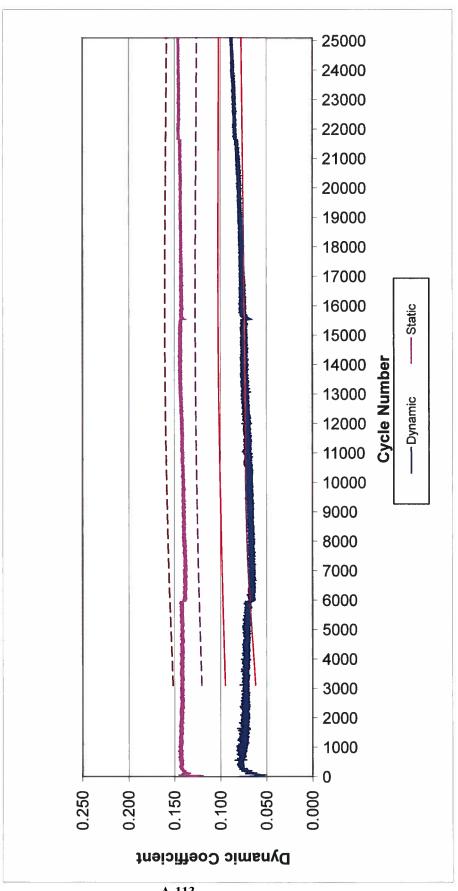
Batch Number:

0071380C00012

Remarks:

Report limit name:

R-008-I


Limit file generated:

9/14/2012

Report format name:

REPFRRET - FRICTION RETENTION

Test: A-111-i Run: A-111-i Started on: 02/13/2014 at 09:39:03

SOUTHWEST RESEARCH INSTITUTE® San Antonio, Texas

Fuels and Lubricants Research Division

Report on

ALLISON TRANSMISSION FLUID TYPE C-4 GRAPHITE CLUTCH FRICTION TEST

Conducted on

Oil Code: LO-306520

Test Number: C4-8-1459

March 10, 2014

Submitted by:

Matthew Jackson Manager

Specialty & Driveline Fluids Evaluation

The results of this report relate only to the fluid tested.

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute®.

C-4 Heavy Duty Transmission

Fluid Specification

Allison Transmission Division

VIII. Graphite Clutch Friction Test

Test Laboratory: SWRI

Lab Fluid Code:

LO-306520

Test Number: C4-8-1459

Sponsor Fluid Code:

Friction Plate Batch: LOT 45

LO306520

Steel Plate Batch: 10/9/2008

Completion Date:

03/10/14

Clutch Wear Data

(units in mm)

	Maximum	Average
Steel Plates	0.0000	0.0000
Clutch Plate	0.0850	0.0672

	Before	After
Pack Clearance	0.4826	0.5588

Reference Tests

Test Number	Test Date	Test Fluid
C4-0-1428	10/16/13	MIL-PRF-2104H
C4-0-1429	10/18/13	MIL-PRF-2104H
C4-0-1440	01/04/14	MIL-PRF-2104H

	New	EOT
Viscosity at 40°C, cSt	47.47	42.24
Viscosity at 100°C, cSt	8.88	7.71
Iron Content, ppm	2	35

D5185	New Fluid (ppm)
Ва	<1
В	<1
Ca	3586
Mg	10
Р	1397
Si	6
Na	24
Zn	1671

Name: Matthew Jackson

Title: Manager

Signature:

Date: _

ALLISON C-4 GRAPHITE FRICTION TEST SUMMARY

(Torque in Ft-Lbs)

Sponsor Fluid Code: LO306520 Test Number: C4-8-1459

Lab Fluid Code: LO-306520 Fric. Plate Batch: LOT 45

Completion Date: 3/10/2014 Steel Plate Batch: 10/9/2008

PHASE A

	SLIP	TORQUE	TORQUE	TORQUE	STATIC PEAK	LOW SPEED	LOWSPEED
CYCLE	TIME	(MIDPOINT)	STATIC PEAK	(.2 Second)	- 0.2 TORQUE	STATIC PEAK	STATIC TORQUE
500	1.11	54	63	47	16	74	61
1000	1.14	53	61	44	17	67	60

PHASE B

	SLIP	TORQUE	TORQUE	TORQUE	STATIC PEAK	LOW SPEED	LOWSPEED
CYCLE	TIME	(MIDPOINT)	STATIC PEAK	(0.2 Second)	- 0.2 TORQUE	STATIC PEAK	STATIC TORQUE
1500	0.71	112	129	108	21	160	130
2000	0.74	109	123	104	19	169	127
2500	0.77	104	118	100	18	135	125
3500	0.81	100	115	91	24	138	124
4000	0.83	98	115	88	27	135	121
4500	0.84	95	112	86	26	137	121
5000	0.85	96	112	83	29	131	122
5500	0.86	95	110	78	32	131	121

	Lin	nits	Results			
	Min	Max	1,500 N	5,500 N	% Change	
Slip Time Max.	N/A	N/A	0.71	0.86	21.13	
0.2 Second Dynamic Coeff.	N/A	N/A	0.101	0.073	-27.723	
Mid-Point Fric. Coeff. Min.	N/A	N/A	0.105	0.089	-15.238	
Static Friction Coeff.	N/A	N/A	0.121	0.103	-14.876	
Low Speed Peak Fric. Coeff.	N/A	N/A	0.150	0.123	-18.000	
0.25 Second Low Speed Coeff.	N/A	N/A	0.122	0.113	-7.377	

The Allison TES-228 (C4) specification is obsolete. Batch 45 limits apply only to tests conducted for Allison TES-439 and TES-295 specifications.

SOUTHWEST RESEARCH INSTITUTE®

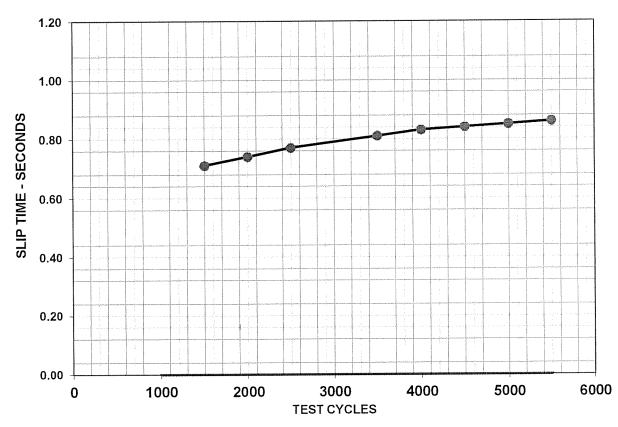
ALLISON C4-GRAPHITE FRICTION TEST

Candidate Fluid: LO306520 Test Number : C4-8-1459 Completion Date : 3/10/2014
Lab Fluid Code : LO-306520 Steel Plate Batch: 10/09/2008 Fric Plate Batch : LOT 45

			(al	l units in mm)				
	Location					Inner	Average	Outer
Plates	of Tooth	Near Inner	Diameter	Near Outer D	Diameter	Diameter	Overall	Diameter
	(Clockwise)	Before	After	Before	After	Change	Change	Change
			FRIC	CTION MATERIAL				
	Тор	2.2150	2.1560	2.2190	2.1340	0.0590		0.0850
2	120	2.2180	2.1680	2.2230	2.1470	0.0500		0.0760
	240	2.2220	2.1680	2.2170	2.1380	0.0540		0.0790
	Average					0.0543	0.0672	0.0800
			STE	EL SEPARATORS				
	Тор	1.7560	1.7560	1.7550	1.7550	0.0000		0.0000
1	120	1.7550	1.7550	1.7550	1.7550	0.0000		0.0000
	240	1.7550	1.7550	1.7560	1.7560	0.0000		0.0000
	Average					0.0000	0.0000	0.0000
	Тор	1.7500	1.7500	1.7500	1.7500	0.0000		0.0000
3	120	1.7480	1.7480	1.7470	1.7470	0.0000		0.0000
	240	1.7480	1.7480	1.7480	1.7480	0 .0000		0.0000
	Average					0.0000	0.0000	0.0000

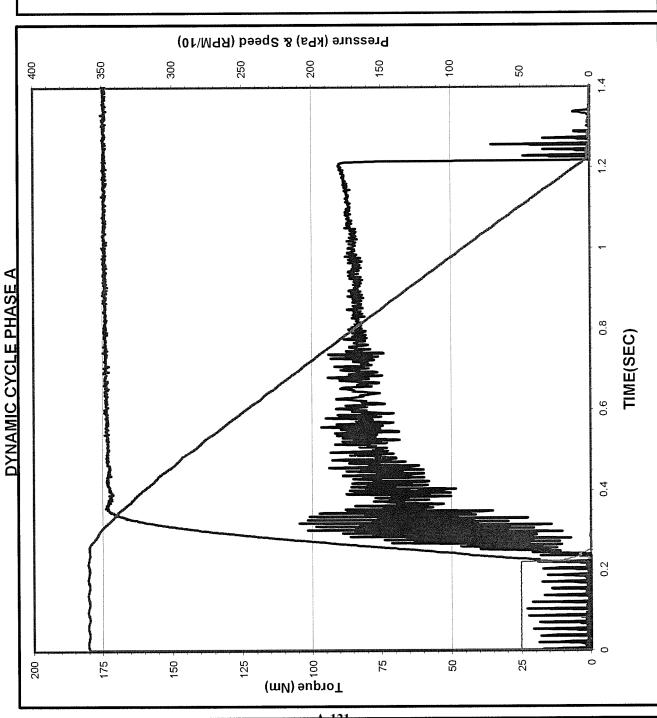
PLATE CONDITION AT E.O.T (Anything Unusual)	. PLATES IN GOOD CONDITION		
Test Date:	3/10/2014		
Operator's Name:	JGUERRERO		

Pack ID#: 5159


Reviewed By (Signature and Date)

ALLISON TRANSMISSION FLUID TYPE C-4 GRAPHITE FRICTION TEST

EOT Date: 3/10/2014 Test Number: C4-8-1459 Fluid Code: LO306520 Plate Batch: LOT 45 Steel Batch: 10/9/2008


AVG: Phase A = 92.5 °C, Phase B = 110.9 °C LO306520 **Cycle Number** C4-8-1459 Temperature (°C)

C4 Reports Version 1.0.8.3

DYNAMIC TRACES

Date of Test: 3/9/2014

Time of Test: 19:33:22

Test Number: C4-8-1459

Fluid Code: LO306520

10 Cycle Number: Temperature:

64.6 °C (93.3 ± 3.0 °C) 346 kPa Apply Pressure:

(345 ± 7 KPa) 0.13 Sec Apply Rate:

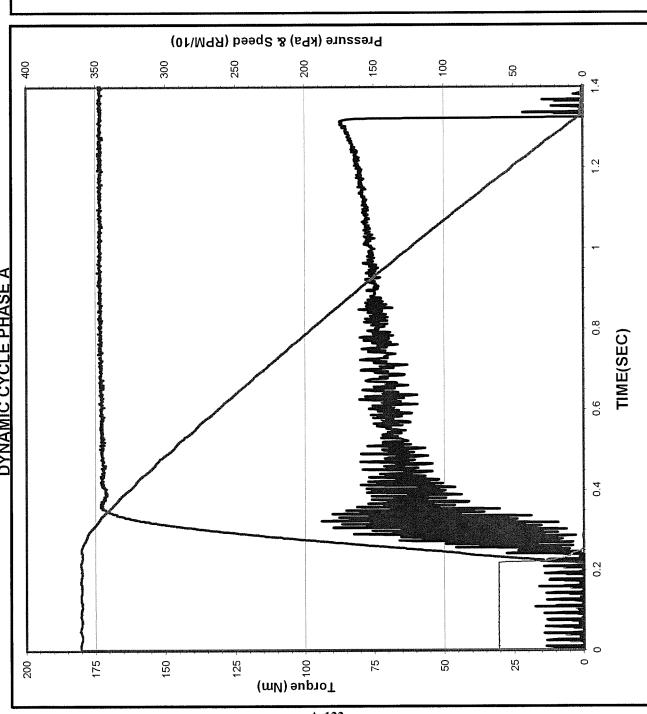
 $(0.15 \pm 0.02 \, \text{Sec})$ 14.2 KJ Energy:

(14.50 ± 0.40 KJ) 0.996 Sec Engage Time:

Torque

0.2 Sec Dyn: Midpoint Dyn:

75 N*m 84 N*m 89 N*m LwSpd Dynamic:


Coefficient of Friction

0.124 0.140 0.148 .2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

Date of Test: 3/9/2014

Test Number: C4-8-1459 Time of Test: 21:35:48

Fluid Code: LO306520

499 Cycle Number: 93.0 °C (93.3 ± 3.0 °C) 347 kPa Temperature:

(345 ± 7 KPa) Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ 0.13 Sec Apply Rate:

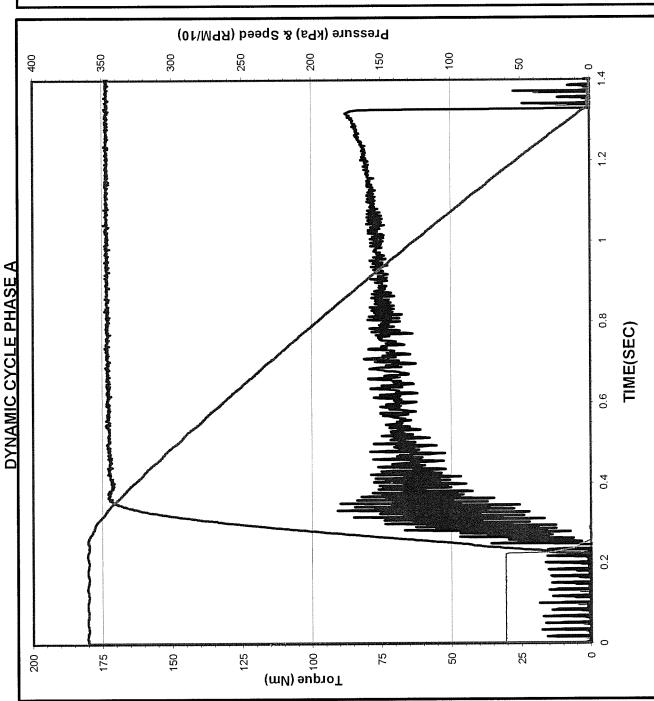
14.2 KJ Energy:

(14.50 ± 0.40 KJ) 1.1 Sec Engage Time:

Torque

65 N*m 74 N*m 86 N*m 0.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:


Coefficient of Friction

.2 Sec Dyn:

0.108 0.123 0.143 Midpoint Dyn: LwSpd Dynamic:

Date of Test: 3/9/2014

Test Number: C4-8-1459 Time of Test: 21:36:04

Fluid Code: LO306520

500 Cycle Number: Temperature:

92.9 °C (93.3 ± 3.0 °C) 347 kPa (345 ± 7 KPa) Apply Pressure:

0.13 Sec Apply Rate:

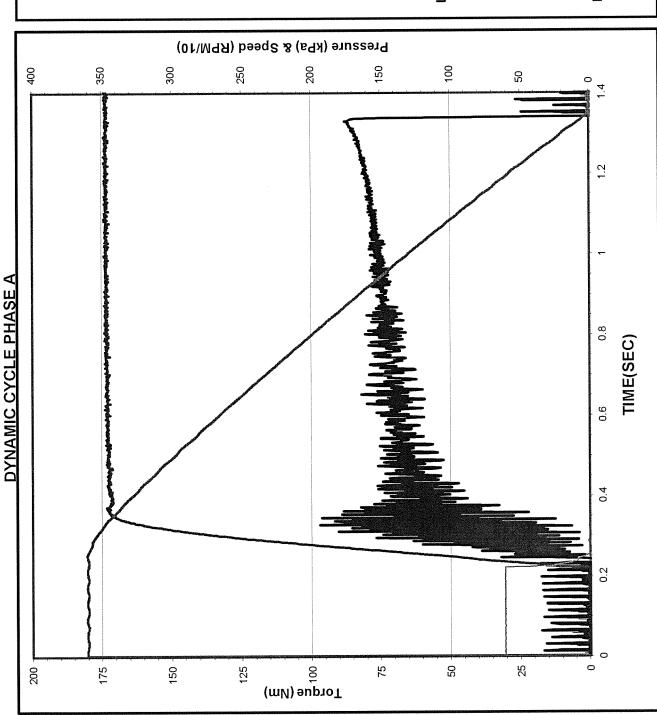
 $(0.15 \pm 0.02 \, \text{Sec})$ 14.2 KJ Energy:

 $(14.50 \pm 0.40 \text{ KJ})$ 1.1 Sec Engage Time:

Torque

0.2 Sec Dyn: Midpoint Dyn:

64 N*m 74 N*m 84 N*m


LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.106 0.124 0.140 LwSpd Dynamic:

Date of Test: 3/9/2014

Time of Test: 21:36:30

Fluid Code: LO306520 Test Number: C4-8-1459

501 Cycle Number: Temperature:

89.5 °C (93.3 ± 3.0 °C) 347 kPa (345 ± 7 KPa) 0.13 Sec Apply Pressure:

Apply Rate:

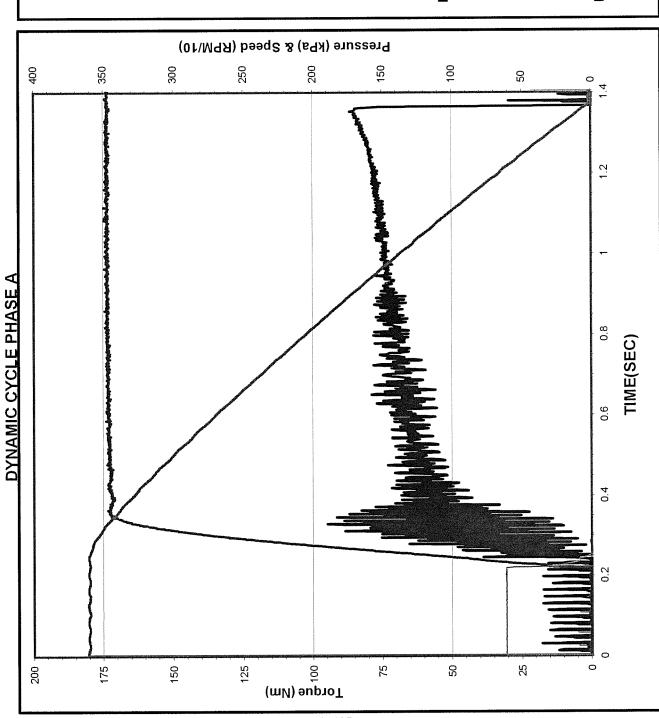
 $(0.15 \pm 0.02 \, \mathrm{Sec})$ 14.2 KJ Energy:

 $(14.50 \pm 0.40 \text{ KJ})$ 1.116 Sec Engage Time:

Torque

0.2 Sec Dyn: Midpoint Dyn:

62 N*m 73 N*m 86 N*m LwSpd Dynamic:


Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.104 0.121 0.142 LwSpd Dynamic:

Date of Test: 3/9/2014

Time of Test: 23:40:45

Fluid Code: LO306520

Test Number: C4-8-1459

966 Cycle Number: **93.5 °C** (93.3 ± 3.0 °C) Temperature:

(345 ± 7 KPa) 347 kPa Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ 0.13 Sec Apply Rate:

14.2 KJ Energy:

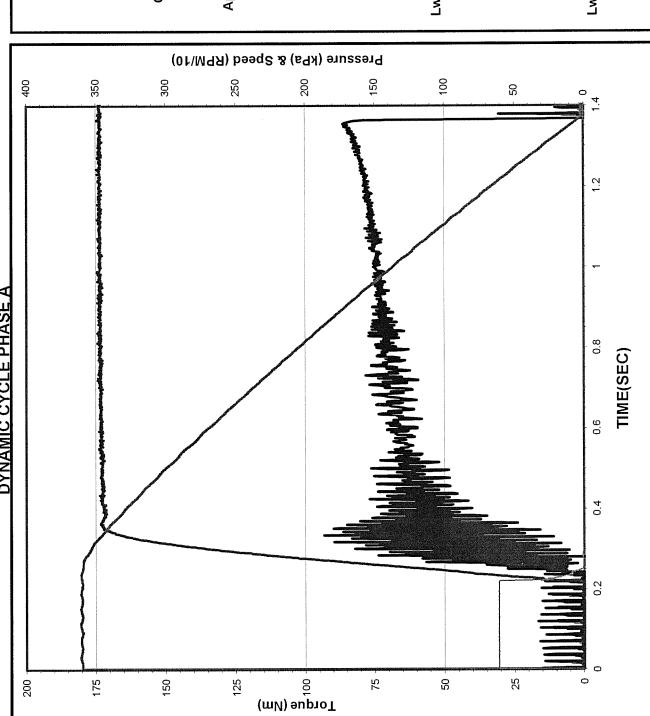
(14.50 ± 0.40 KJ) 1.142 Sec Engage Time:

Torque

0.2 Sec Dyn: Midpoint Dyn:

60 N*m 72 N*m 84 N*m LwSpd Dynamic:

Coefficient of Friction


.2 Sec Dyn:

0.099 0.119 0.139 Midpoint Dyn: LwSpd Dynamic:

C4 Reports Version 1.0.8.3

Time of Test: 23:41:00 Date of Test: 3/9/2014

Fluid Code: LO306520 Test Number: C4-8-1459

666 Cycle Number: Temperature:

93.4 °C (93.3 ± 3.0 °C)

347 kPa (345 ± 7 KPa) 0.13 Sec (0.15 ± 0.02 Sec) Apply Rate: Apply Pressure:

14.2 KJ

 $(14.50 \pm 0.40 \text{ KJ})$ 1.142 Sec Energy:

Engage Time:

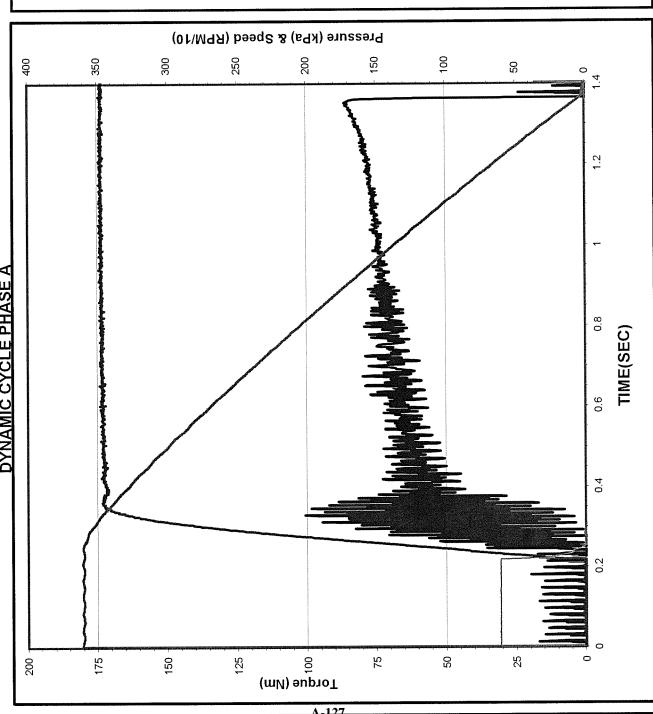
Torque

0.2 Sec Dyn: Midpoint Dyn:

60 N*m 72 N*m 83 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:


LwSpd Dynamic:

0.100 0.119 0.138

C4 Reports Version 1.0.8.3

Date of Test: 3/9/2014

Time of Test: 23:41:15

Fluid Code: LO306520

Test Number: C4-8-1459

1000 Cycle Number: **93.2 °C** (93.3 ± 3.0 °C) Temperature:

(345 ± 7 KPa) 347 kPa Apply Pressure:

 $(0.15 \pm 0.02 \, \mathrm{Sec})$ 0.13 Sec Apply Rate:

14.2 KJ Energy:

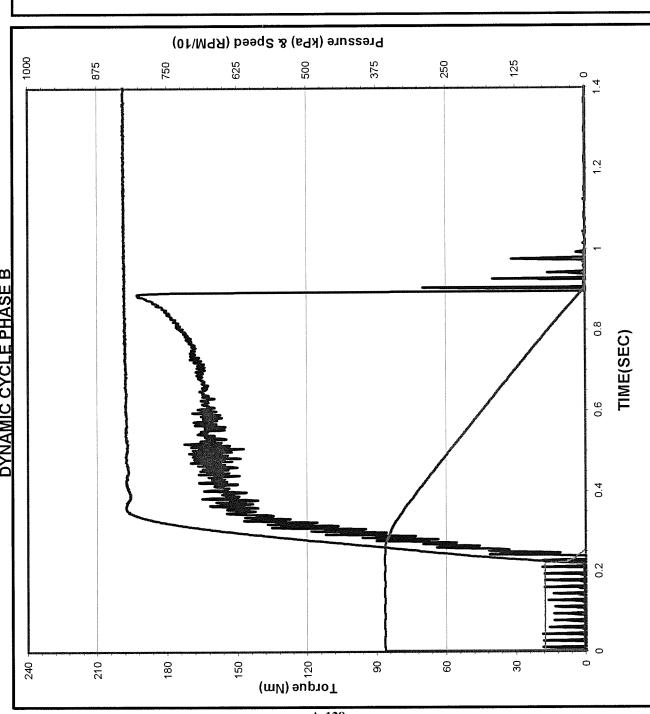
 $(14.50 \pm 0.40 \text{ KJ})$ 1.145 Sec Engage Time:

Torque

0.2 Sec Dyn: Midpoint Dyn:

61 N*m 72 N*m 82 N*m LwSpd Dynamic:

Coefficient of Friction


.2 Sec Dyn:

Midpoint Dyn:

0.101 0.119 0.136 LwSpd Dynamic:

Date of Test: 3/10/2014

Time of Test: 0:08:09

Test Number: C4-8-1459

Fluid Code: LO306520

1010 Cycle Number: **84.5 °C** (112.7 ± 3.0 °C) Temperature:

821 kPa Apply Pressure:

827 ± 7 KPa) 0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 18.4 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.675 Sec

Engage Time:

Torque

159 N*m 0.2 Sec Dyn: Midpoint Dyn:

163 N*m 189 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn:

Midpoint Dyn:

0.110 0.113 0.131 LwSpd Dynamic:

Fluid Code: LO306520

1499 Cycle Number:

110.8 °C (112.7 ± 3.0 °C) Temperature:

829 kPa 827 ± 7 KPa) Apply Pressure:

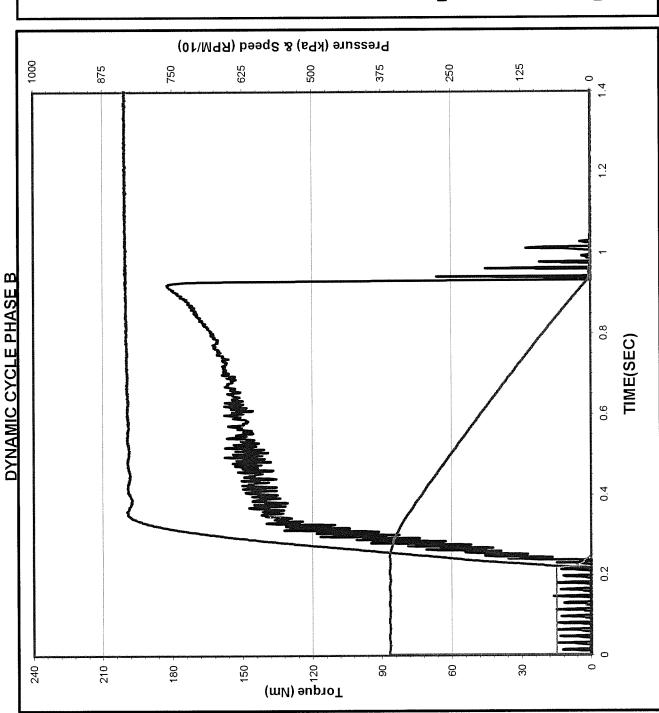
 $(0.15 \pm 0.02 \, \text{Sec})$ 0.13 Sec Apply Rate:

18.4 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.71 Sec Engage Time:

Torque

147 N*m 0.2 Sec Dyn: Midpoint Dyn:


153 N*m 178 N*m LwSpd Dynamic:

0.102 0.106 0.123 .2 Sec Dyn: Midpoint Dyn:

Coefficient of Friction LwSpd Dynamic:

Pressure (kPa) & Speed (RPM/10) 875 625 200 375 250 125 750 4. TIME(SEC) 9.0 4.0 0.2 210 -Torque (Nm) 8 180 150 8 8 240

Date of Test: 3/10/2014

Time of Test: 2:10:39

Fluid Code: LO306520

Test Number: C4-8-1459

110.8 °C 1500 Cycle Number: Temperature:

(112.7 ± 3.0 °C) **829 kPa** 827 ± 7 KPa) Apply Pressure:

0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 18.4 KJ Energy:

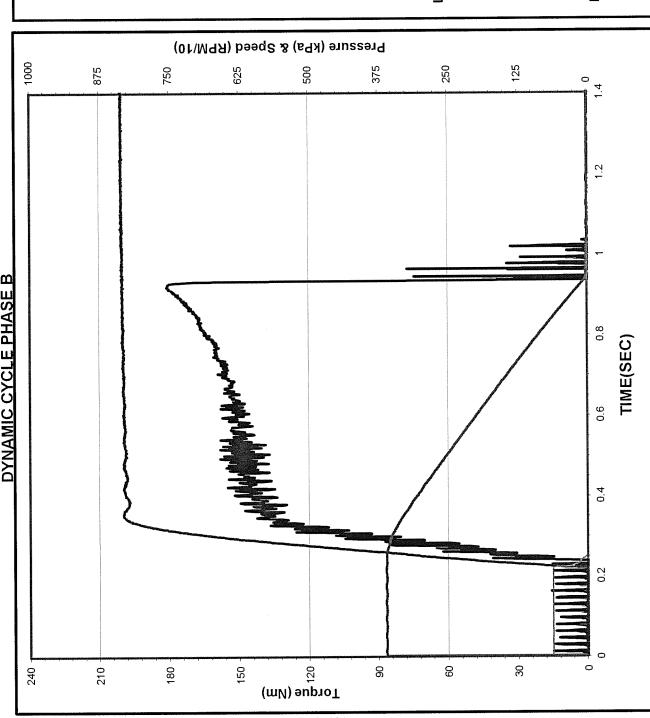
 $(18.71 \pm 0.40 \text{ KJ})$ 0.714 Sec Engage Time:

Torque

145 N*m 0.2 Sec Dyn: Midpoint Dyn:

152 N*m 176 N*m LwSpd Dynamic:

Coefficient of Friction


.2 Sec Dyn: Midpoint Dyn:

0.100 0.105 0.122 LwSpd Dynamic:

C4 Reports Version 1.0.8.3

Date of Test: 3/10/2014

Time of Test: 2:11:06

Test Number: C4-8-1459 Fluid Code: LO306520

1501 Cycle Number: **106.8 °C** (112.7 ± 3.0 °C) Temperature:

827 ± 7 KPa) 829 kPa Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ 0.13 Sec Apply Rate:

18.4 KJ Energy:

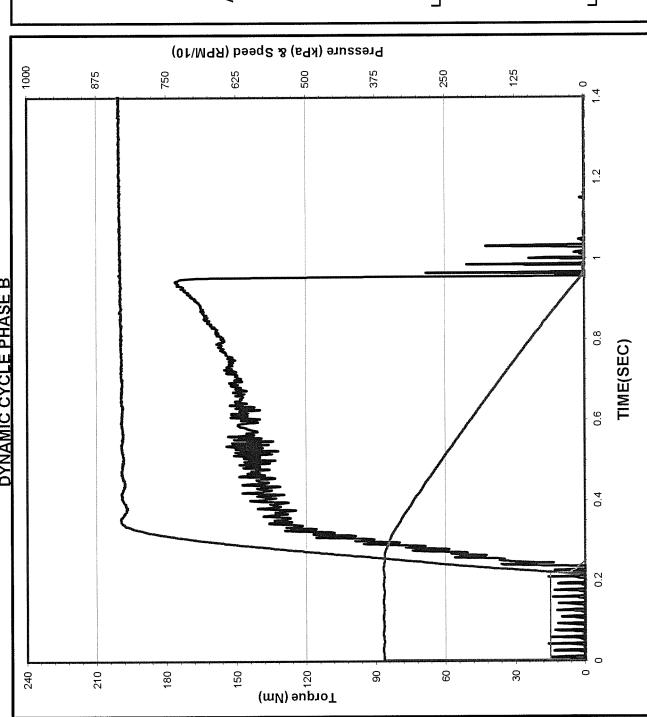
 $(18.71 \pm 0.40 \text{ KJ})$ 0.714 Sec Engage Time:

Torque

147 N*m 0.2 Sec Dyn: Midpoint Dyn:

152 N*m 172 N*m LwSpd Dynamic:

Coefficient of Friction


.2 Sec Dyn:

Midpoint Dyn:

0.101 0.105 0.119 LwSpd Dynamic:

Date of Test: 3/10/2014

Test Number: C4-8-1459 Time of Test: 4:15:36

Fluid Code: LO306520

1999 Cycle Number: **110.9 °C** (112.7 ± 3.0 °C) Temperature:

827 ± 7 KPa) 828 kPa Apply Pressure:

0.12 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 18.4 KJ Energy:

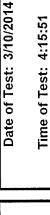
 $(18.71 \pm 0.40 \text{ KJ})$ 0.738 Sec Engage Time:

Torque

140 N*m 0.2 Sec Dyn: Midpoint Dyn:

147 N*m 169 N*m LwSpd Dynamic:

Coefficient of Friction


.2 Sec Dyn:

0.096 0.101 0.117 Midpoint Dyn:

LwSpd Dynamic:

C4 Reports Version 1.0.8.3

Test Number: C4-8-1459

2000 Fluid Code: LO306520 Cycle Number: 110.9 °C Temperature:

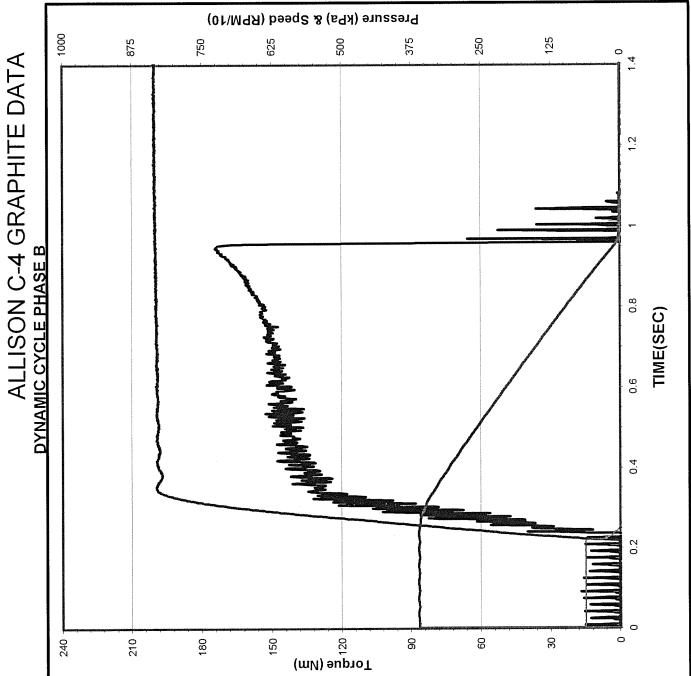
(112.7 ± 3.0 °C) 829 kPa Apply Pressure:

827 ± 7 KPa) 0.12 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 18.5 KJ Energy:

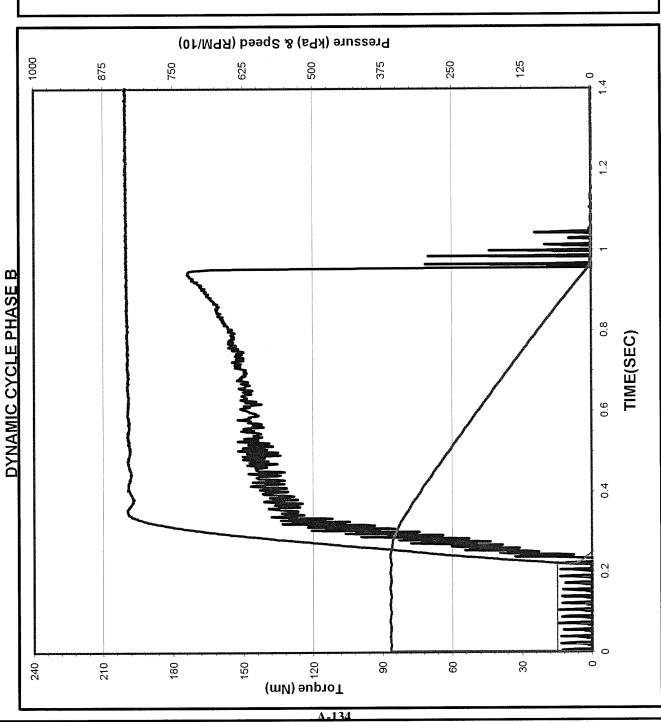
 $(18.71 \pm 0.40 \text{ KJ})$ 0.74 Sec Engage Time:

Torque


140 N*m 0.2 Sec Dyn: Midpoint Dyn:

147 N*m 169 N*m LwSpd Dynamic:

Coefficient of Friction


0.102 0.117

0.097 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Date of Test: 3/10/2014

Test Number: C4-8-1459 Time of Test: 4:16:17

Fluid Code: LO306520

2001 Cycle Number: **107.5 °C** (112.7 ± 3.0 °C) Temperature:

827 ± 7 KPa) 830 kPa Apply Pressure:

0.12 Sec Apply Rate:

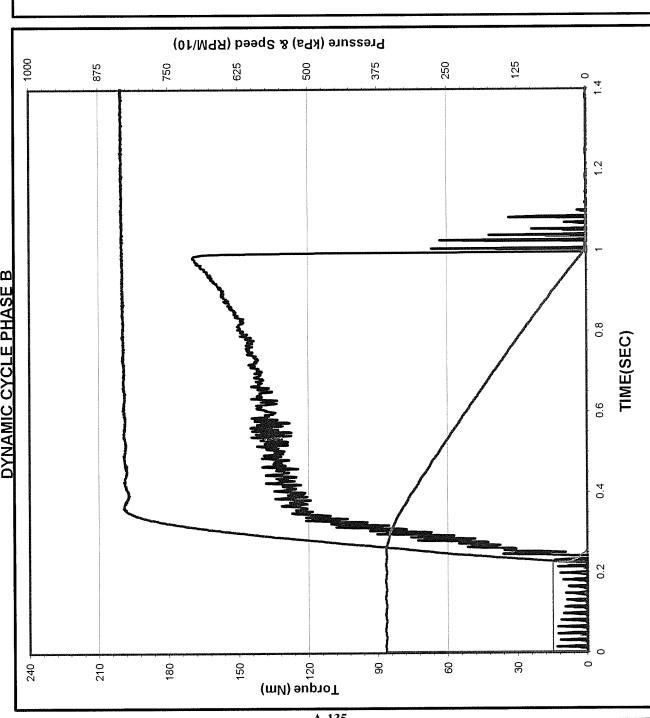
 $(0.15 \pm 0.02 \, \text{Sec})$ 18.4 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.737 Sec Engage Time:

Torque

142 N*m 0.2 Sec Dyn:

148 N*m 166 N*m Midpoint Dyn: LwSpd Dynamic:


Coefficient of Friction

0.098 .2 Sec Dyn: Midpoint Dyn:

0.102 0.114 LwSpd Dynamic:

Date of Test: 3/10/2014

Time of Test: 6:20:47

Fluid Code: LO306520

Test Number: C4-8-1459

2499 Cycle Number:

110.8 °C (112.7 ± 3.0 °C) Temperature:

827 ± 7 KPa) 829 kPa Apply Pressure:

 $(0.15 \pm 0.02 \text{ Sec})$ 0.14 Sec Apply Rate:

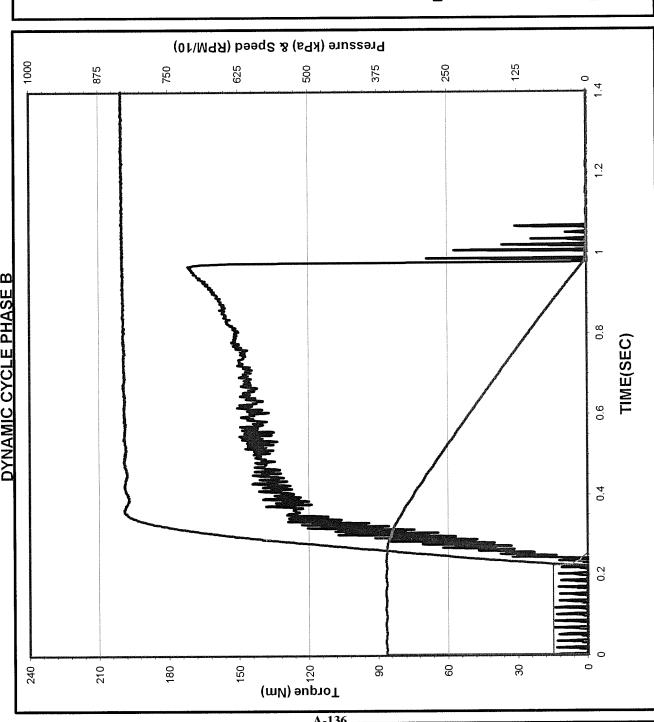
18.4 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.771 Sec Engage Time:

Torque

131 N*m 0.2 Sec Dyn: Midpoint Dyn:

140 N*m 164 N*m LwSpd Dynamic:


Coefficient of Friction

0.091 0.096 0.113 .2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

Date of Test: 3/10/2014

Time of Test: 6:21:03

Fluid Code: LO306520 Test Number: C4-8-1459

2500 Cycle Number:

Temperature:

110.6 °C (112.7 ± 3.0 °C) 829 kPa Apply Pressure:

827 ± 7 KPa) 0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$

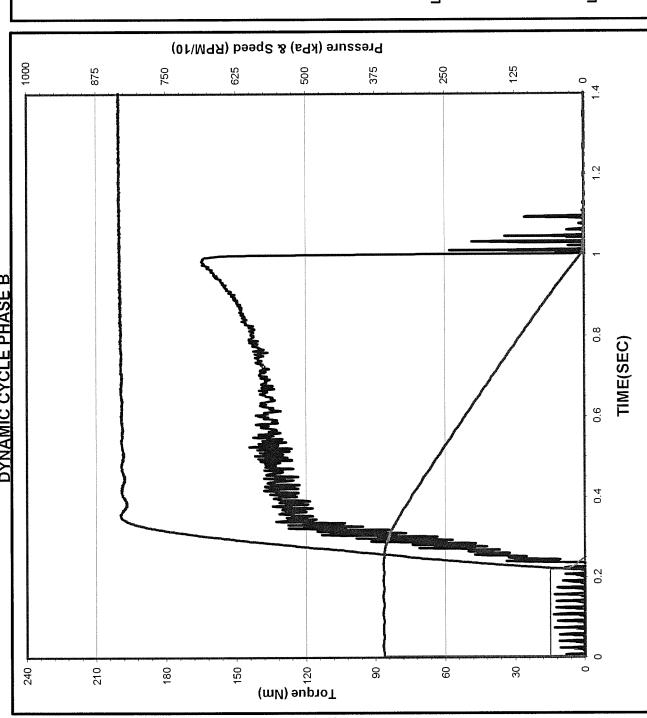
18.4 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.755 Sec Engage Time:

Torque

0.2 Sec Dyn: Midpoint Dyn:

137 N*m 145 N*m 164 N*m LwSpd Dynamic:


Coefficient of Friction

0.095 .2 Sec Dyn:

0.100 Midpoint Dyn: LwSpd Dynamic:

Date of Test: 3/10/2014

Test Number: C4-8-1459 Time of Test: 6:21:29

Fluid Code: LO306520

2501 Cycle Number: **107.5 °C** (112.7 ± 3.0 °C) Temperature:

827 ± 7 KPa) 0.13 Sec 829 kPa Apply Pressure: Apply Rate:

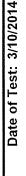
 $(0.15 \pm 0.02 \, \text{Sec})$ 18.4 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.785 Sec Engage Time:

Torque

133 N*m 0.2 Sec Dyn: Midpoint Dyn:

138 N*m 155 N*m LwSpd Dynamic:


Coefficient of Friction

.2 Sec Dyn:

0.092 0.095 0.107 Midpoint Dyn: LwSpd Dynamic:

DYNAMIC CYCLE PHASE B

1000

Time of Test: 8:25:59

Test Number: C4-8-1459 Fluid Code: LO306520

875

210

240

180

2999

Cycle Number:

750

111.1 °C Temperature:

(112.7 ± 3.0 °C) Apply Pressure:

830 kPa 827 ± 7 KPa) 0.13 Sec Apply Rate:

625

 $(0.15 \pm 0.02 \, \text{Sec})$

Pressure (kPa) & Speed (RPM/10)

200

18.4 KJ Energy:

(18.71 ± 0.40 KJ) **0.795 Sec** Engage Time:

Torque

375

0.2 Sec Dyn: Midpoint Dyn:

127 N*m 135 N*m 157 N*m LwSpd Dynamic:

250

125

Coefficient of Friction

LwSpd Dynamic:

.2 Sec Dyn: Midpoint Dyn:

0.088 0.094 0.108

4.

C4 Reports Version 1.0.8.3

TIME(SEC)

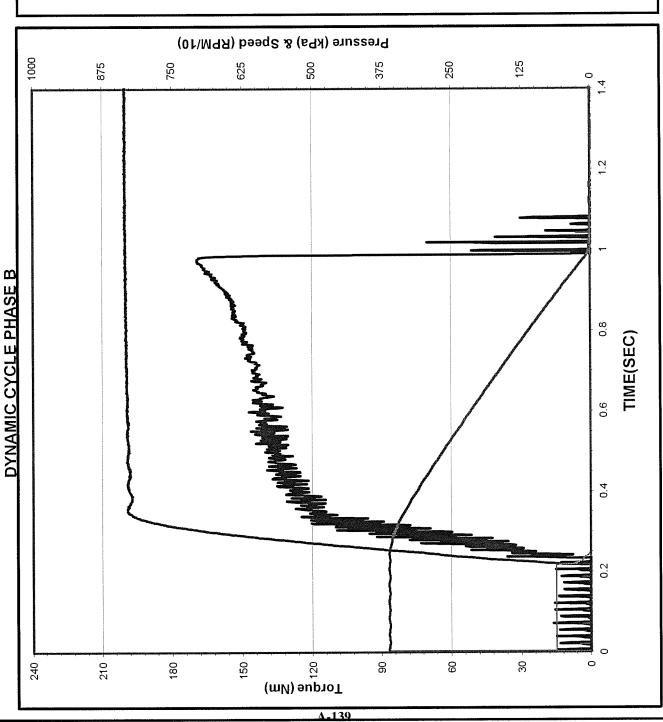
9.0

0.4

0.2

39

150



8

9

Torque (Nm)

Date of Test: 3/10/2014

Test Number: C4-8-1459

Time of Test: 8:26:14

Fluid Code: LO306520

3000 Cycle Number: **110.9 °C** (112.7 ± 3.0 °C) Temperature:

830 kPa 827 ± 7 KPa) Apply Pressure:

0.13 Sec Apply Rate:

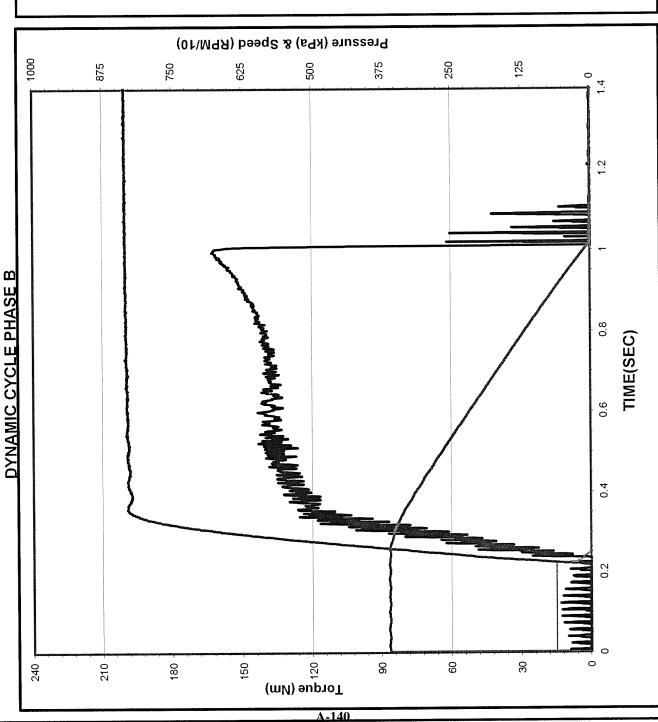
(0.15 ± 0.02 Sec) 18.4 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.773 Sec Engage Time:

Torque

Midpoint Dyn: 0.2 Sec Dyn:

131 N*m 141 N*m 164 N*m LwSpd Dynamic:


Coefficient of Friction

0.091 Midpoint Dyn: .2 Sec Dyn:

0.098 LwSpd Dynamic:

Date of Test: 3/10/2014

Test Number: C4-8-1459 Time of Test: 8:26:41

Fluid Code: LO306520

3001 Cycle Number: **107.6 °C** (112.7 ± 3.0 °C) Temperature:

827 ± 7 KPa) 830 kPa Apply Pressure:

0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \mathrm{Sec})$ 18.4 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.79 Sec Engage Time:

Torque

0.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

130 N*m 139 N*m 156 N*m

Coefficient of Friction

0.090 .2 Sec Dyn:

Midpoint Dyn: LwSpd Dynamic:

0.096

C4 Reports Version 1.0.8.3

ALLISON C-4 GRAPHITE DATA DYNAMIC CYCLE PHASE B

1000

Time of Test: 10:31:11

Fluid Code: LO306520 Test Number: C4-8-1459

875

210

180

240

3499 Cycle Number:

750

111.2 °C Temperature:

(112.7 ± 3.0 °C) 830 kPa Apply Pressure:

625

0.13 Sec (0.15 ± 0.02 Sec) 827 ± 7 KPa) Apply Rate:

18.4 KJ Energy:

Pressure (kPa) & Speed (RPM/10)

200

Engage Time:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.802 Sec

Torque

375

123 N*m 0.2 Sec Dyn: Midpoint Dyn:

135 N*m 159 N*m

LwSpd Dynamic:

250

Coefficient of Friction

125

0.085 0.093 0.110

.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

4.

1.2

TIME(SEC)

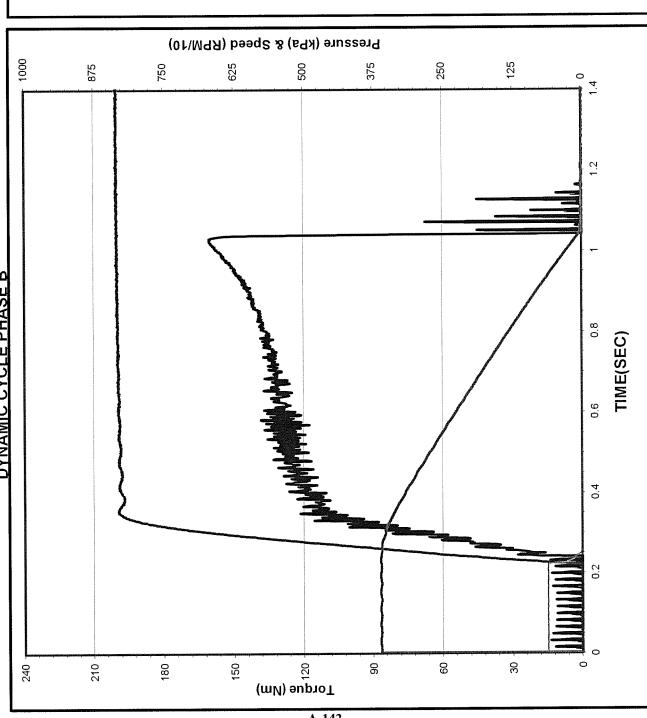
9.4

0.2

A-141

8

9


30

Torque (Nm)

150

Date of Test: 3/10/2014

Time of Test: 10:31:26

Fluid Code: LO306520

Test Number: C4-8-1459

3500 Cycle Number: **111.5 °C** (112.7 ± 3.0 °C) Temperature:

827 ± 7 KPa) 830 kPa Apply Pressure:

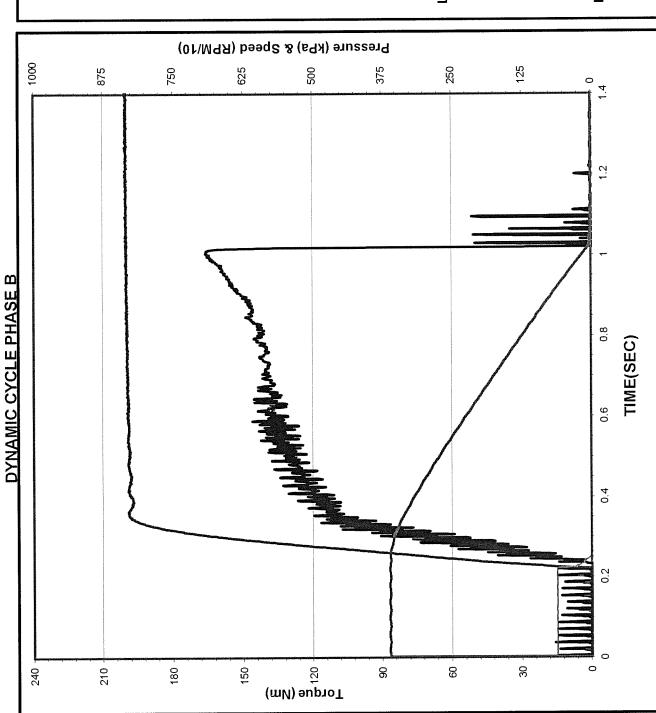
 $(0.15 \pm 0.02 \, \text{Sec})$ 0.13 Sec Apply Rate:

18.5 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.82 Sec Engage Time:

Torque

122 N*m 0.2 Sec Dyn: Midpoint Dyn:


131 N*m 153 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.085 0.091 0.105 LwSpd Dynamic:

Date of Test: 3/10/2014

Test Number: C4-8-1459

Time of Test: 10:31:53

3501 Fluid Code: LO306520 Cycle Number: **107.6 °C** (112.7 ± 3.0 °C) Temperature:

830 kPa Apply Pressure:

827 ± 7 KPa) 0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 18.4 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.798 Sec Engage Time:

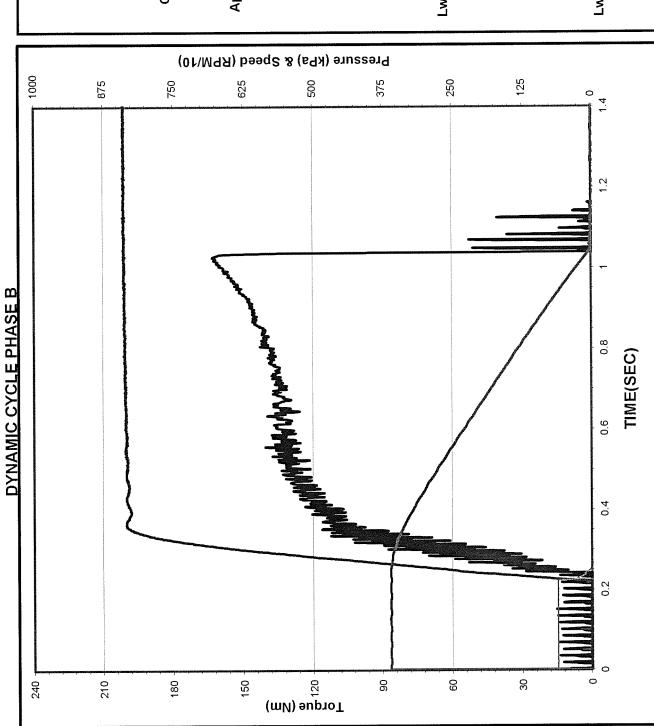
Torque

124 N*m 0.2 Sec Dyn: Midpoint Dyn:

139 N*m 159 N*m

LwSpd Dynamic:

Coefficient of Friction


.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

0.086 0.096 0.110

Date of Test: 3/10/2014

Time of Test: 12:36:23

Test Number: C4-8-1459

Fluid Code: LO306520

3999 Cycle Number: Temperature:

111.0 °C (112.7 ± 3.0 °C) 834 kPa Apply Pressure:

827 ± 7 KPa) 0.14 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 18.4 KJ Energy:

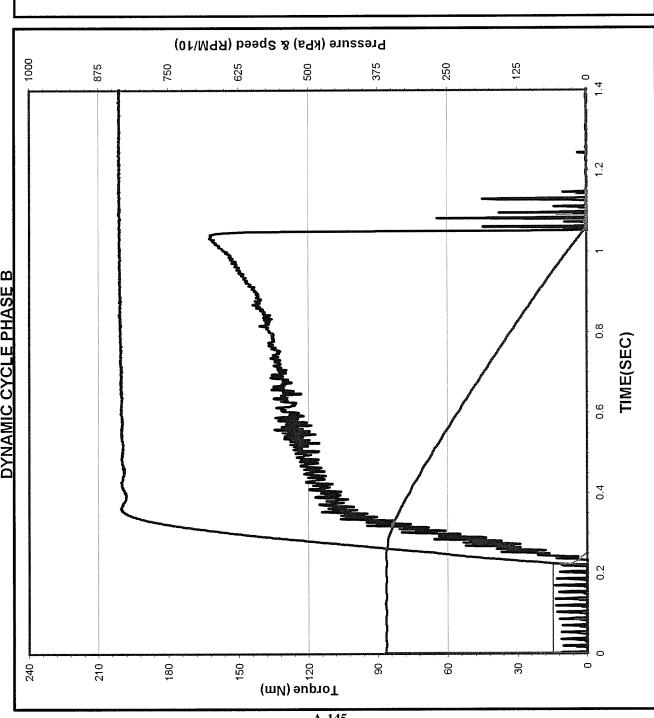
 $(18.71 \pm 0.40 \text{ KJ})$ **0.816 Sec** Engage Time:

Torque

0.2 Sec Dyn:

122 N*m 134 N*m 157 N*m Midpoint Dyn: LwSpd Dynamic:

Coefficient of Friction


.2 Sec Dyn:

Midpoint Dyn: LwSpd Dynamic:

0.084 0.093 0.108

Date of Test: 3/10/2014

Test Number: C4-8-1459 Time of Test: 12:36:38

Fluid Code: LO306520

4000 Cycle Number: **111.0 °C** (112.7 ± 3.0 °C) Temperature:

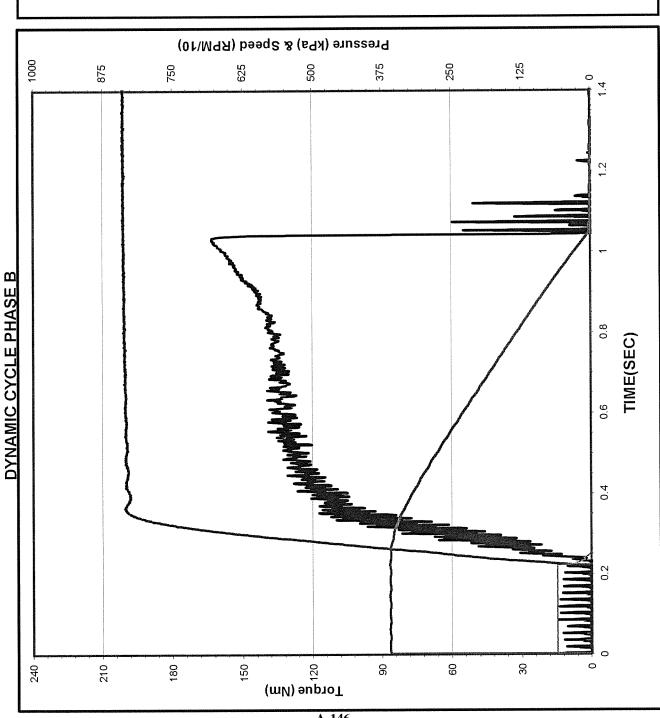
833 kPa Apply Pressure:

827 ± 7 KPa) 0.14 Sec Apply Rate:

(0.15 ± 0.02 Sec) 18.4 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.831 Sec** Engage Time:

0.2 Sec Dyn: Midpoint Dyn:


117 N*m 131 N*m 155 N*m LwSpd Dynamic:

Coefficient of Friction

Midpoint Dyn: .2 Sec Dyn:

0.081 0.090 0.107 LwSpd Dynamic:

Date of Test: 3/10/2014

Test Number: C4-8-1459 Time of Test: 12:37:05

Fluid Code: LO306520

4001 Cycle Number: **107.5 °C** (112.7 ± 3.0 °C) Temperature:

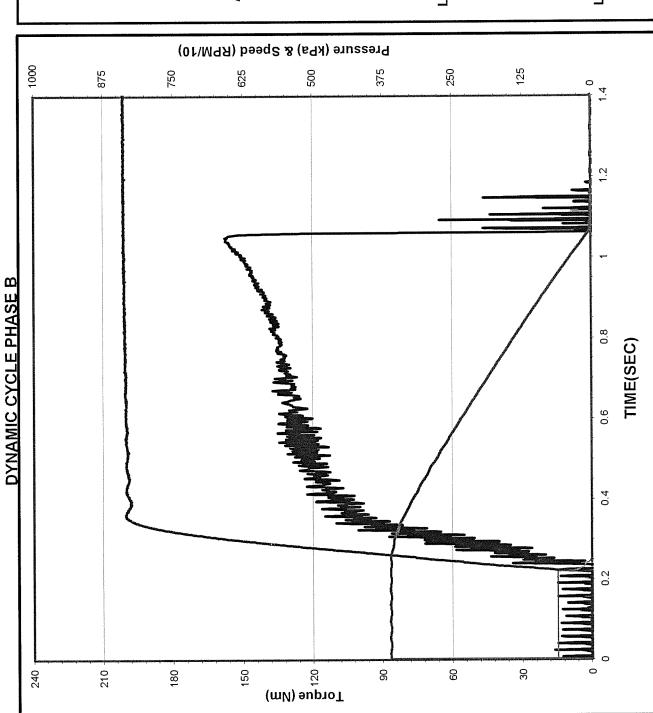
827 ± 7 KPa) 833 kPa 0.14 Sec Apply Rate: Apply Pressure:

(0.15 ± 0.02 Sec) 18.4 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ **0.822 Sec** Engage Time:

Torque

122 N*m 0.2 Sec Dyn: Midpoint Dyn:


134 N*m 156 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn:

0.084 0.093 0.108 Midpoint Dyn: LwSpd Dynamic:

Date of Test: 3/10/2014

Test Number: C4-8-1459 Time of Test: 14:41:35

Fluid Code: LO306520

4499 Cycle Number: 111.1 °C (112.7 ± 3.0 °C) Temperature:

827 ± 7 KPa) 834 kPa Apply Pressure:

0.14 Sec Apply Rate:

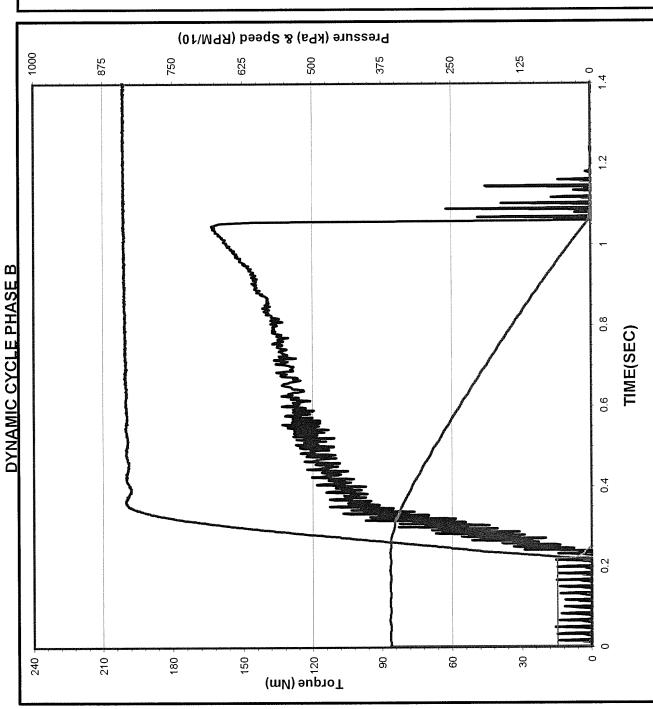
 $(0.15 \pm 0.02 \, \text{Sec})$ 18.4 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.843 Sec Engage Time:

Torque

0.2 Sec Dyn: Midpoint Dyn:

115 N*m 130 N*m 150 N*m LwSpd Dynamic:


Coefficient of Friction

.2 Sec Dyn:

Midpoint Dyn:

0.080 0.090 0.104 LwSpd Dynamic:

Date of Test: 3/10/2014

Test Number: C4-8-1459 Time of Test: 14:41:50

Fluid Code: LO306520

4500 Cycle Number: Temperature:

111.1 °C (112.7 ± 3.0 °C)

827 ± 7 KPa) 833 kPa 0.14 Sec Apply Rate: Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ 18.4 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.84 Sec Engage Time:

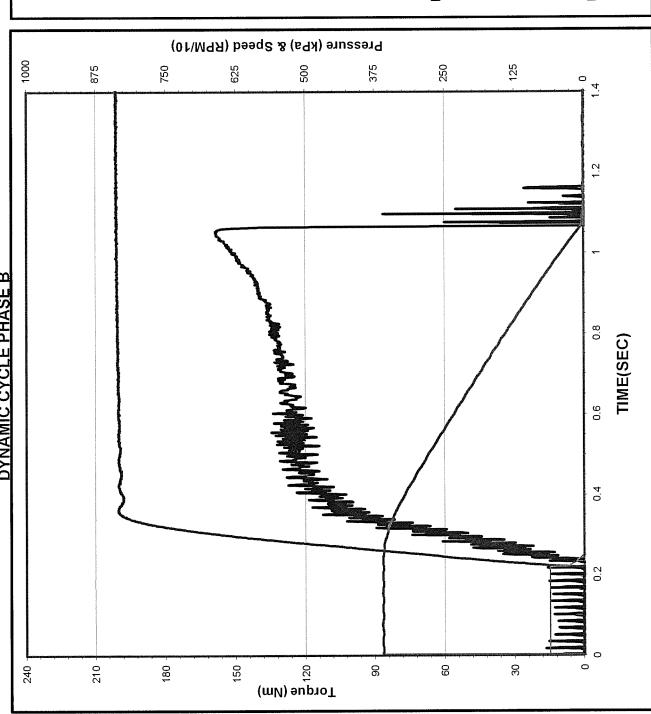
Torque

114 N*m 0.2 Sec Dyn: Midpoint Dyn:

130 N*m 155 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn:


Midpoint Dyn: LwSpd Dynamic:

0.078 0.090 0.107

C4 Reports Version 1.0.8.3

Date of Test: 3/10/2014

Test Number: C4-8-1459 Time of Test: 14:42:16

Fluid Code: LO306520

4501 Cycle Number: **107.2 °C** (112.7 ± 3.0 °C) Temperature:

833 kPa Apply Pressure:

827 ± 7 KPa) 0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \text{ Sec})$ 18.4 KJ Energy:

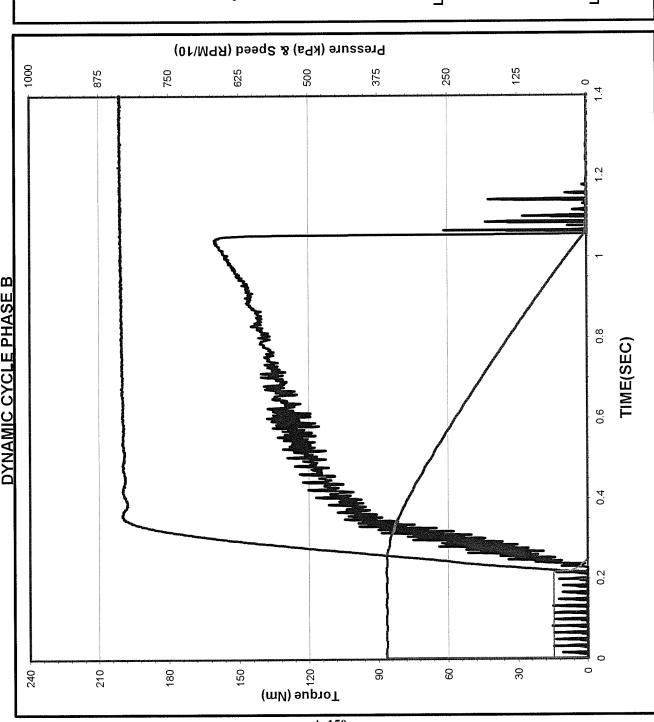
 $(18.71 \pm 0.40 \text{ KJ})$ 0.847 Sec Engage Time:

Torque

119 N*m 0.2 Sec Dyn: Midpoint Dyn:

128 N*m 150 N*m LwSpd Dynamic:

Coefficient of Friction


.2 Sec Dyn:

Midpoint Dyn: LwSpd Dynamic:

0.082 0.089 0.103

Date of Test: 3/10/2014

Test Number: C4-8-1459 Time of Test: 16:46:46

Fluid Code: LO306520

4999 Cycle Number:

111.0 °C (112.7 ± 3.0 °C) Temperature:

827 ± 7 KPa) 832 kPa Apply Pressure:

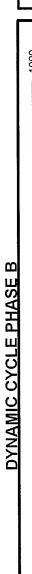
0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \text{ Sec})$ 18.4 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.839 Sec Engage Time:

Torque

111 N*m 0.2 Sec Dyn: Midpoint Dyn:


132 N*m 155 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn:

0.077 0.091 0.107 Midpoint Dyn: LwSpd Dynamic:

Test Number: C4-8-1459

Fluid Code: LO306520

5000 Cycle Number: **111.1 °C** (112.7 ± 3.0 °C) Temperature:

833 kPa Apply Pressure:

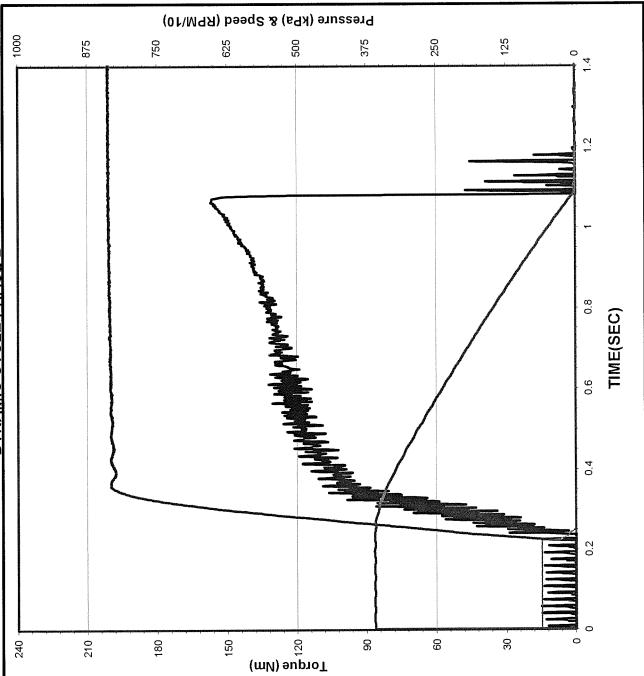
827 ± 7 KPa) 0.14 Sec Apply Rate:

(0.15 ± 0.02 Sec) 18.4 KJ Energy:

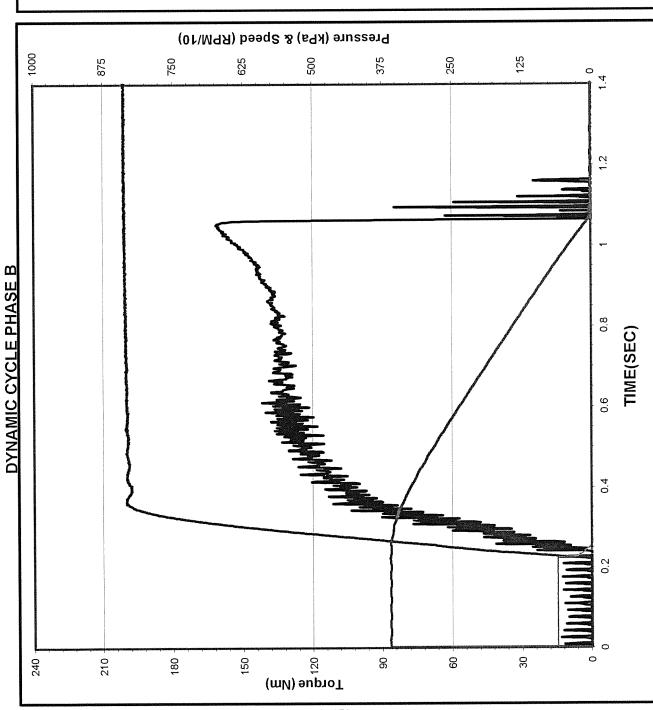
 $(18.71 \pm 0.40 \text{ KJ})$ **0.861 Sec** Engage Time:

Torque

110 N*m 0.2 Sec Dyn: Midpoint Dyn:


126 N*m 148 N*m LwSpd Dynamic:

Coefficient of Friction


.2 Sec Dyn:

Midpoint Dyn:

0.076 0.087 0.102 LwSpd Dynamic:

Date of Test: 3/10/2014

Test Number: C4-8-1459 Time of Test: 16:47:28

Fluid Code: LO306520

5001 Cycle Number: **107.5 °C** (112.7 ± 3.0 °C) Temperature:

833 kPa 827 ± 7 KPa) Apply Pressure:

0.13 Sec Apply Rate:

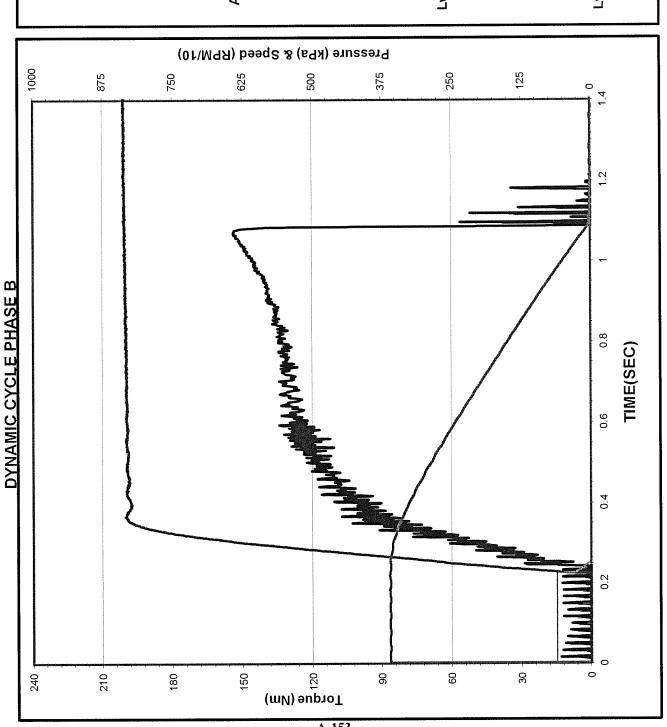
 $(0.15 \pm 0.02 \, \text{Sec})$ 18.4 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.84 Sec Engage Time:

Torque


114 N*m 0.2 Sec Dyn: Midpoint Dyn:

134 N*m 156 N*m LwSpd Dynamic:


Coefficient of Friction

.2 Sec Dyn:

0.079 0.092 0.108 Midpoint Dyn: LwSpd Dynamic:

Date of Test: 3/10/2014

Test Number: C4-8-1459 Time of Test: 18:51:43

Fluid Code: LO306520

5498 Cycle Number: **111.1 °C** (112.7 ± 3.0 °C) Temperature:

832 kPa Apply Pressure:

827 ± 7 KPa) 0.13 Sec Apply Rate:

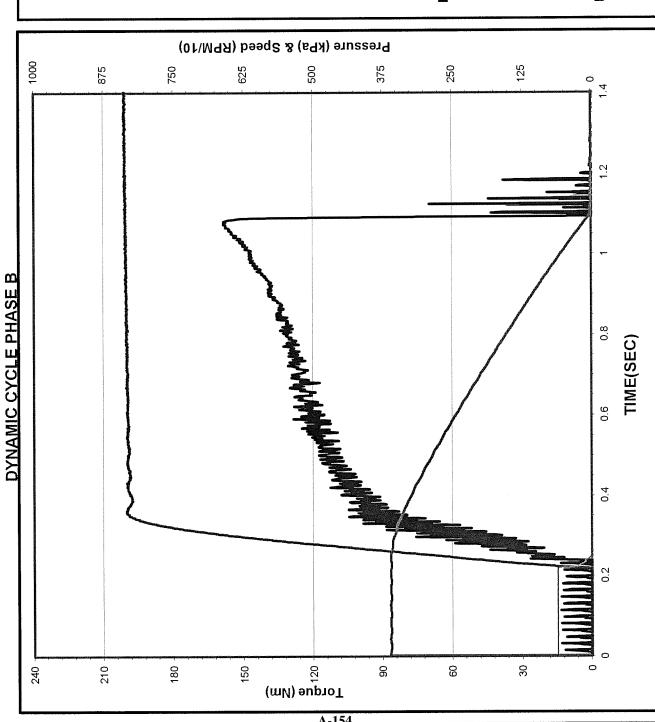
 $(0.15 \pm 0.02 \, \text{Sec})$ 18.4 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.863 Sec Engage Time:

Torque

0.2 Sec Dyn: Midpoint Dyn:

108 N*m 131 N*m 147 N*m LwSpd Dynamic:


Coefficient of Friction

.2 Sec Dyn:

0.074 0.090 0.102 Midpoint Dyn: LwSpd Dynamic:

Date of Test: 3/10/2014

Test Number: C4-8-1459

Time of Test: 18:51:58

Fluid Code: LO306520

5499 Cycle Number: **111.0 °C** (112.7 ± 3.0 °C) Temperature:

831 kPa Apply Pressure:

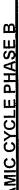
827 ± 7 KPa) 0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 18.4 KJ Energy:

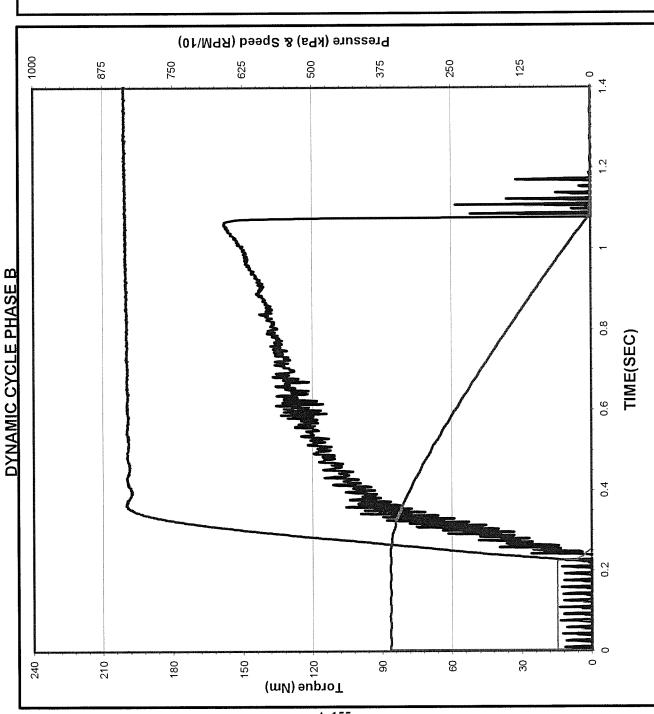
(18.71 ± 0.40 KJ) **0.874 Sec** Engage Time:

Torque

0.2 Sec Dyn: Midpoint Dyn:


105 N*m 125 N*m 149 N*m LwSpd Dynamic:

Coefficient of Friction


.2 Sec Dyn:

Midpoint Dyn: LwSpd Dynamic:

0.072 0.087 0.103

Date of Test: 3/10/2014

Test Number: C4-8-1459 Time of Test: 18:52:13

Fluid Code: LO306520

5500 Cycle Number: **110.7 °C** (112.7 ± 3.0 °C) Temperature:

831 kPa Apply Pressure:

827 ± 7 KPa) 0.13 Sec Apply Rate:

 $(0.15 \pm 0.02 \text{ Sec})$ 18.4 KJ Energy:

 $(18.71 \pm 0.40 \text{ KJ})$ 0.853 Sec Engage Time:

Torque

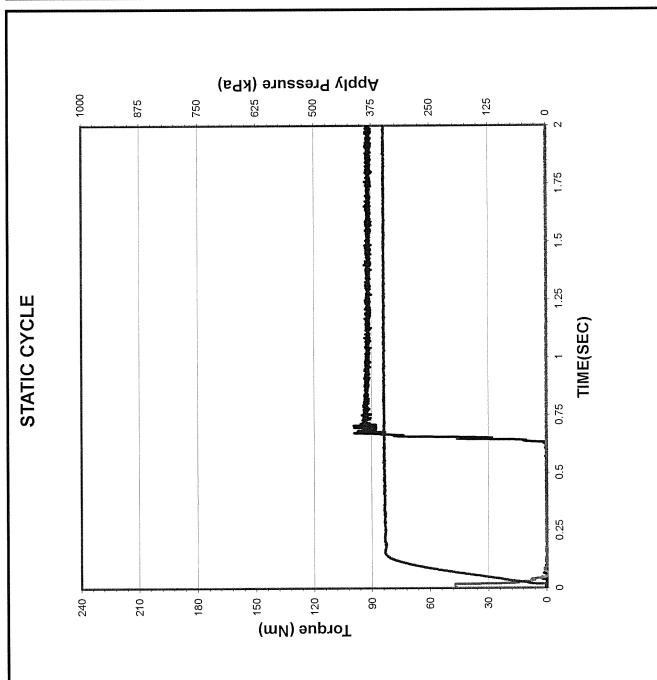
106 N*m 0.2 Sec Dyn: Midpoint Dyn:

130 N*m 153 N*m LwSpd Dynamic:

Coefficient of Friction

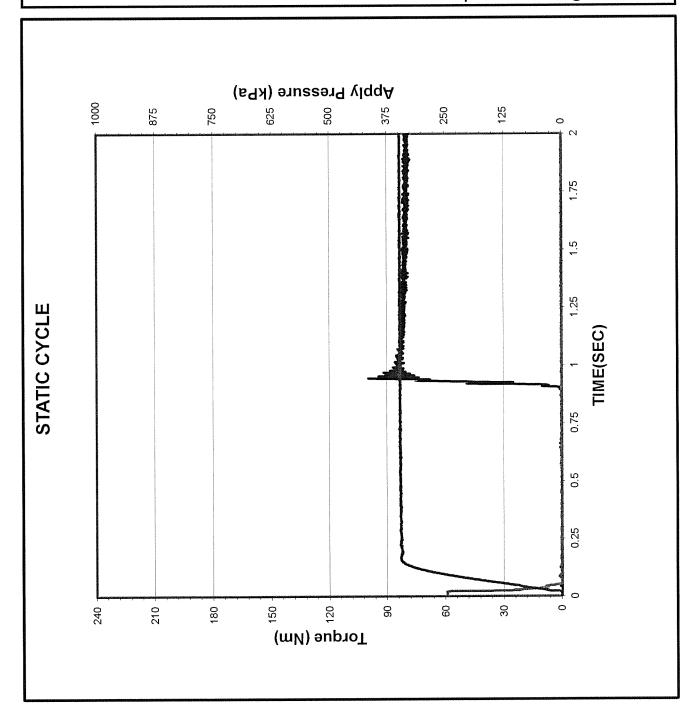
.2 Sec Dyn:

Midpoint Dyn:


0.073 0.090 0.105 LwSpd Dynamic:

STATIC TRACES

Date of Test: 3/9/2014



10 Test Number: C4-8-1459 Fluid Code: LO306520 Time of Test: 19:33:33 **PHASE A** Cycle Number:

100 Nm 93 Nm 346 kPa Torque Static Peak: .25 Second: Apply Pressure: At .25 Second:

Coefficient of Friction Static Peak: .25 Second:

Date of Test: 3/9/2014

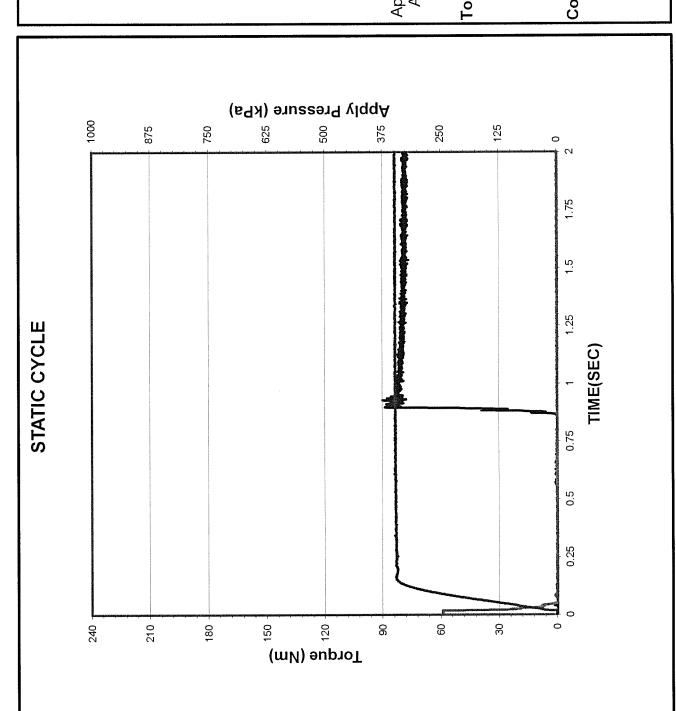
Test Number: C4-8-1459 Time of Test: 21:36:15

Fluid Code: LO306520

Cycle Number:

500

PHASE A


Apply Pressure: At .25 Second:

347 kPa

101 Nm 82 Nm Torque Static Peak: .25 Second:

Coefficient of Friction Static Peak: .25 Second:

A-159

Date of Test: 3/9/2014

Time of Test: 23:41:27

Test Number: C4-8-1459

Fluid Code: LO306520

Cycle Number:

1000

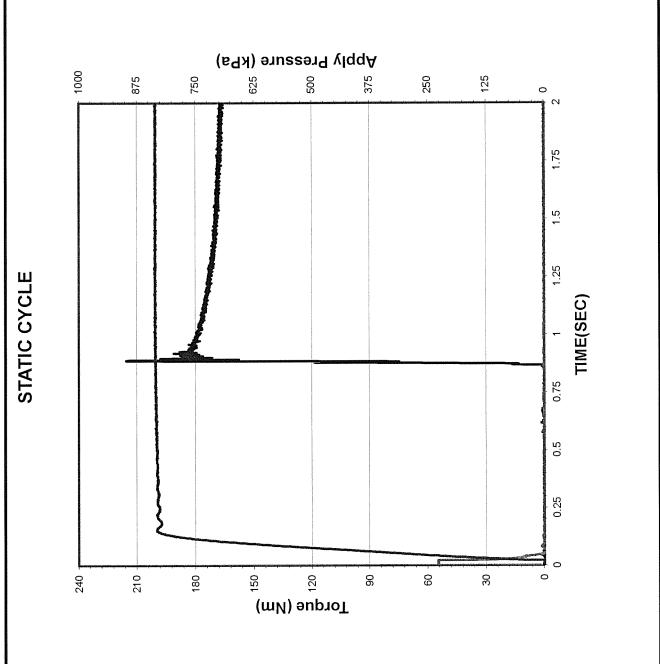
PHASE A

Apply Pressure: At .25 Second:

nd: 347 kPa

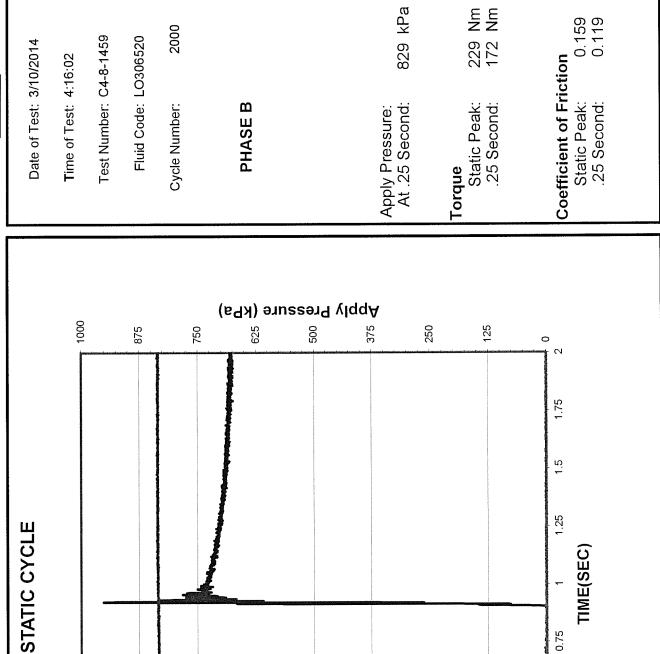
Torque Static Peak: .25 Second:

91 **N**m 82 **N**m


Coefficient of Friction

Static Peak: .25 Second:

0.151



A-160

Torque (Mm) 52 52

A-161

8

3

8

210

180

240

C4 Reports Version 1.0.8.3

184 Nm 170 Nm

Coefficient of Friction

Static Peak: .25 Second:

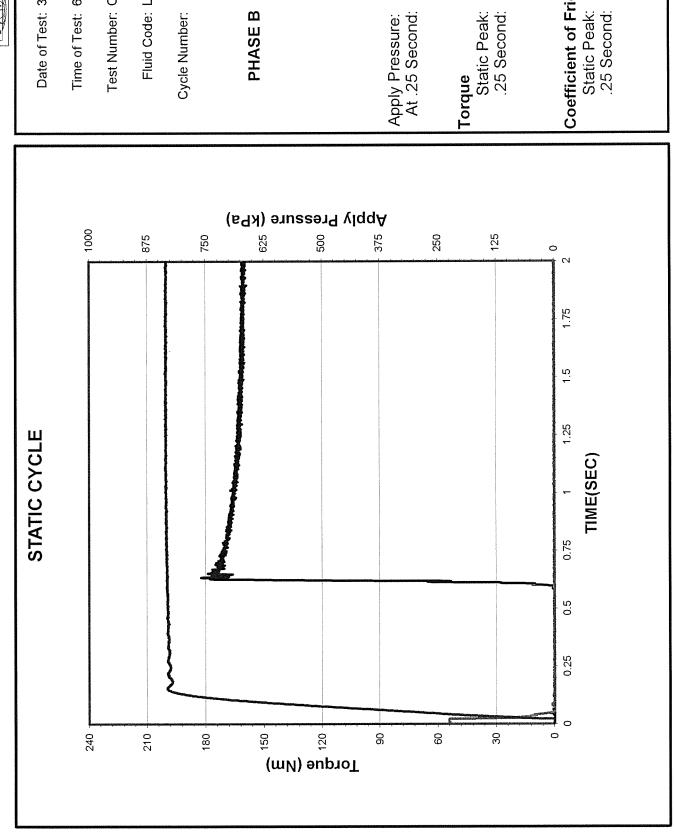
829 kPa

Apply Pressure: At .25 Second:

ALLISON C-4 GRAPHITE DATA

Date of Test: 3/10/2014

Time of Test: 6:21:14


2500

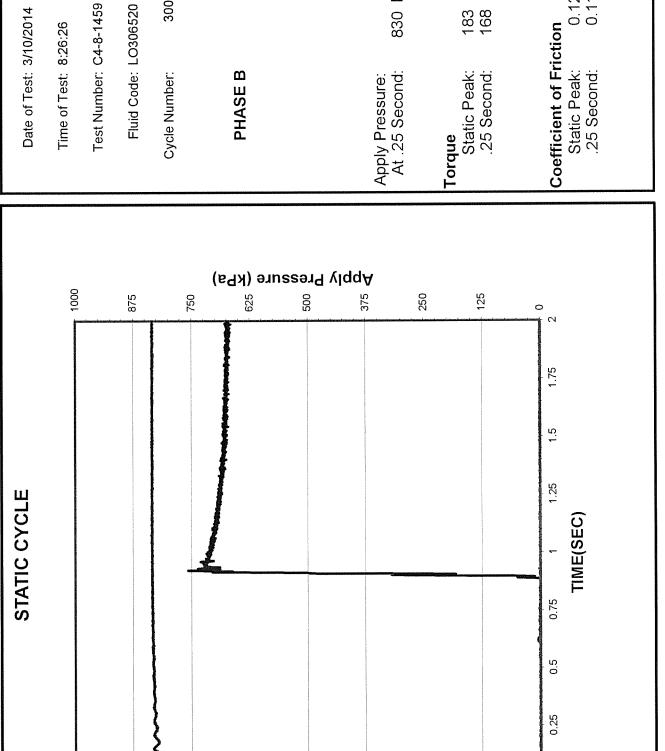
Cycle Number:

PHASE B

Test Number: C4-8-1459

Fluid Code: LO306520

A-162


183 Nm 168 Nm

830 kPa

ALLISON C-4 GRAPHITE DATA

3000

8

09

ဓ

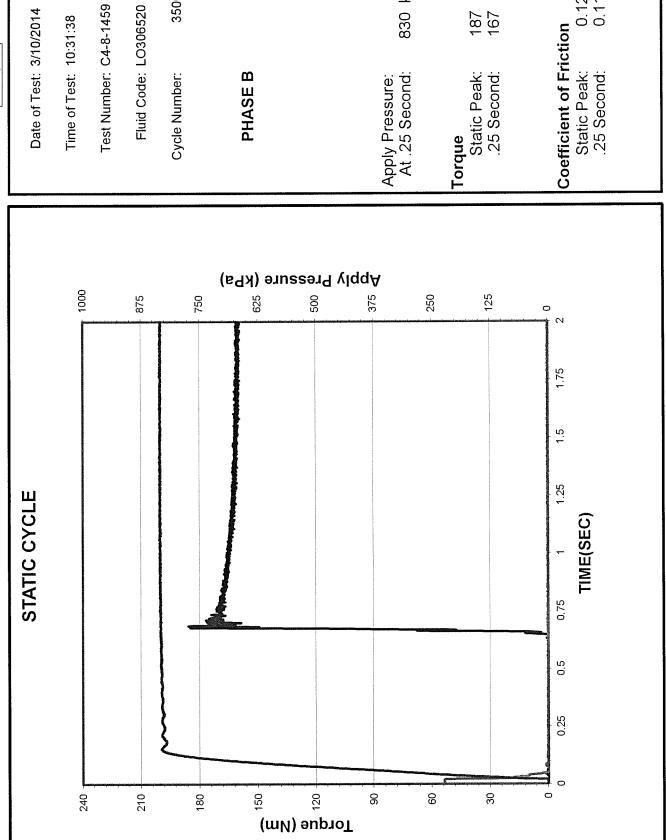
Torque (Mm) 52

210

240

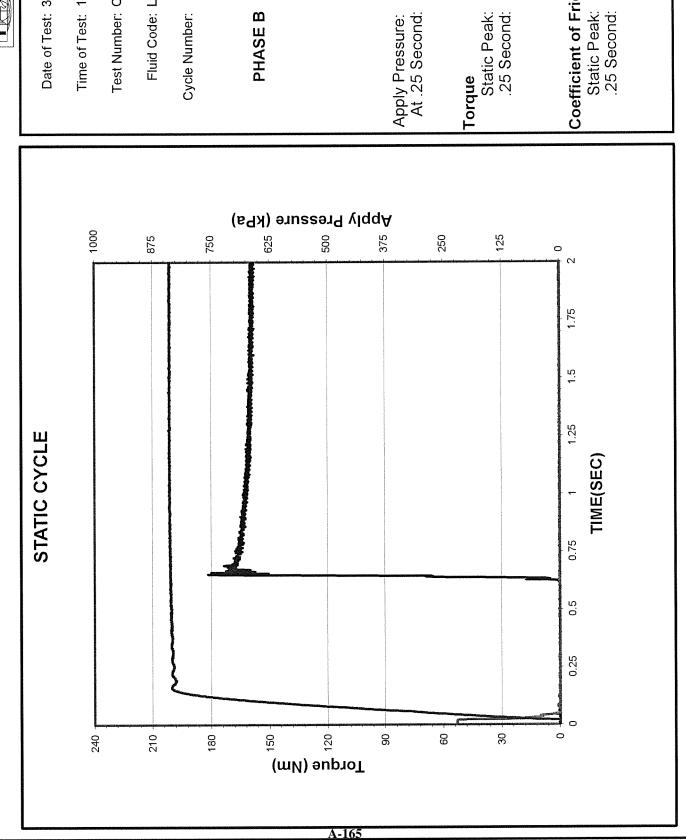
180

187 Nm 167 Nm


0.129 0.116

830 kPa

ALLISON C-4 GRAPHITE DATA



3500

A-164

Date of Test: 3/10/2014

Time of Test: 12:36:49

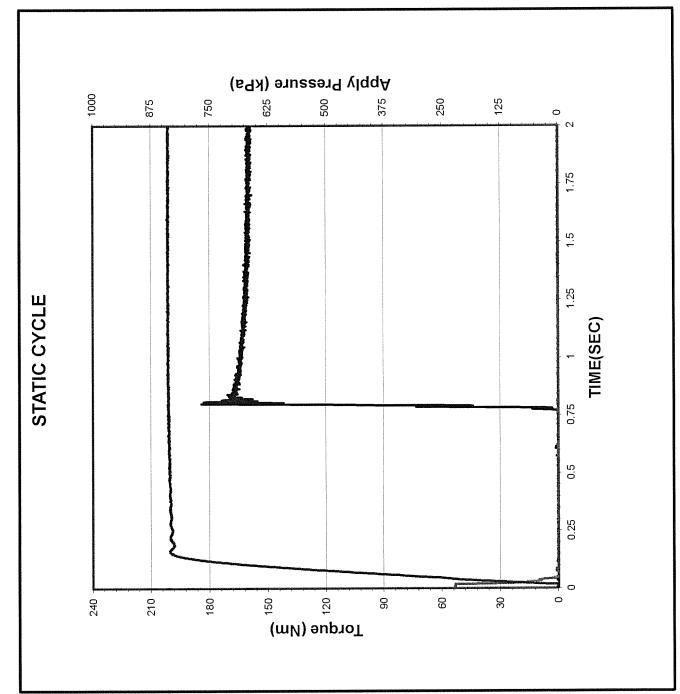
Test Number: C4-8-1459 Fluid Code: LO306520

Cycle Number:

4000

PHASE B

833 kPa


Apply Pressure: At .25 Second:

183 Nm 164 Nm

Coefficient of Friction

Static Peak: .25 Second:

Date of Test: 3/10/2014

Time of Test: 14:42:01

Test Number: C4-8-1459

Fluid Code: LO306520

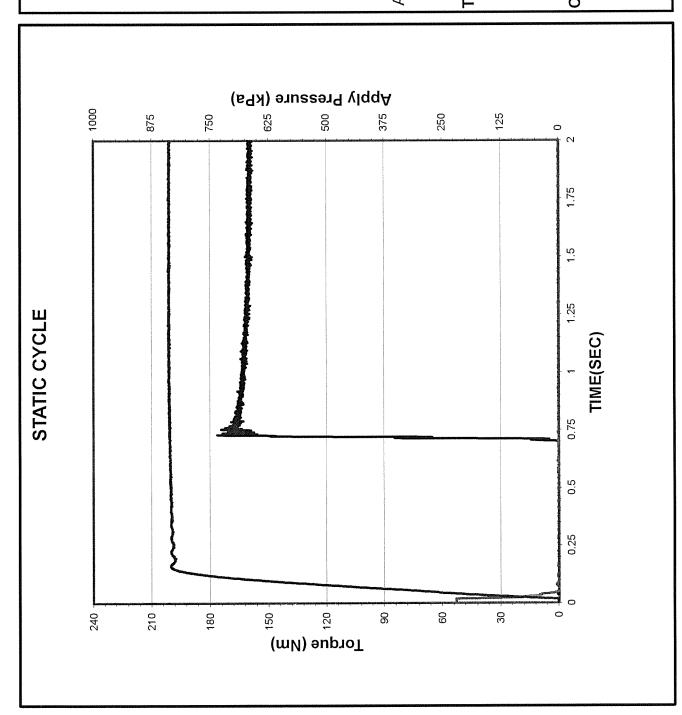
Cycle Number:

4500

PHASE B

Apply Pressure: At .25 Second:

833 KPa


185 Nm 165 Nm Torque Static Peak: .25 Second:

Coefficient of Friction

Static Peak: .25 Second:

0.128

Date of Test: 3/10/2014

Time of Test: 16:47:13

Test Number: C4-8-1459

Fluid Code: LO306520

Cycle Number:

5000

PHASE B

Apply Pressure: At .25 Second:

833 kPa

Torque Static Peak: .25 Second:

178 Nm 166 Nm

Coefficient of Friction

Static Peak: .25 Second:

C4 Reports Version 1.0.8.3

C4 Reports Version 1.0.8.3

178 Nm 165 Nm

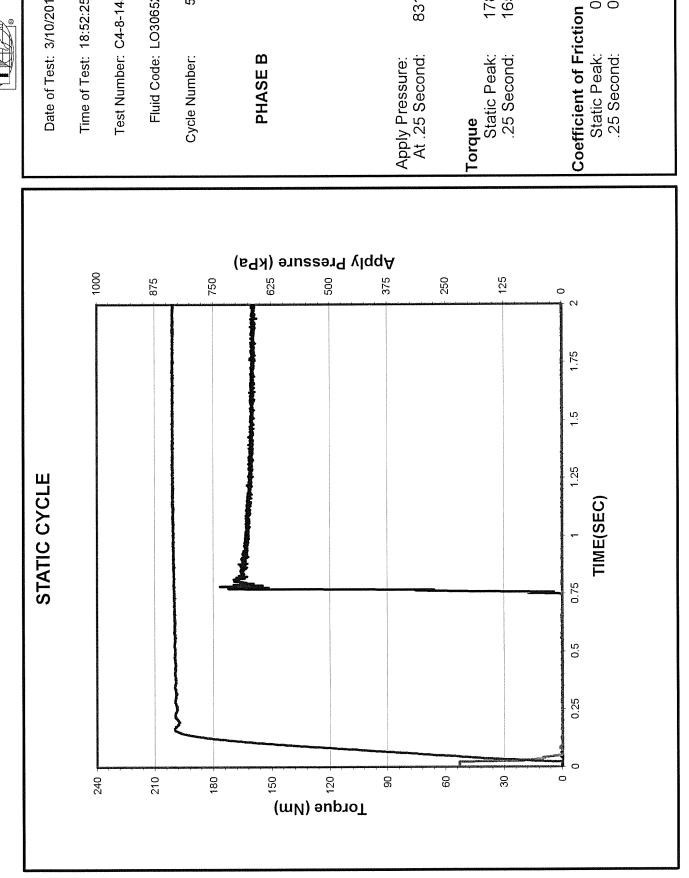
Static Peak: .25 Second:

831 kPa

ALLISON C-4 GRAPHITE DATA

Date of Test: 3/10/2014

Time of Test: 18:52:25


5500

Cycle Number:

PHASE B

Test Number: C4-8-1459

Fluid Code: LO306520

SOUTHWEST RESEARCH INSTITUTE® San Antonio, Texas

Fuels and Lubricants Research Division

This page has been AMENDED.
Initial: <u>CR</u>
Date: 3/21/14
Date

Report on

ALLISON TRANSMISSION FLUID TYPE C-4 PAPER CLUTCH FRICTION TEST

Conducted For

ARMY LAB

Oil Code: LO306520

Test Number: C2-8-1616

March 9, 2014

Submitted by:

Matthew Jackson

Specialty & Driveline Fluids Evaluation

Manager

The results of this report relate only to the fluid tested.

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute®.

C4 Heavy Duty Transmission

Fluid Specification

Allison Transmission Division

IX. Paper Clutch Friction Test

Test Laboratory: SWRI
Test Number: C2-8-1616
Friction Plate Batch: LOT 6
Steel Plate Batch: 10/9/2008

Lab Fluid Code: LO-306520 Sponsor Fluid Code: LO306520 Completion Date: 03/09/14

Clutch Wear Data

(units in mm)

	Maximum	Average
Steel Plates	0.0000	0.0000
Clutch Plate	0.0860	0.0758

	Before	After
Pack Clearance	0.9652	1.2446

Reference Tests

Test Number	Test Date	Test Fluid
C2-0-1581	06/04/12	TRANSYND RD 07-27-11
C2-0-1592	01/04/13	RDL-2746 08-12
C2-0-1608	10/10/13	RDL-2746 08-12

	New	EOT
Viscosity at 40°C, cSt	47.68	40.86
Viscosity at 100°C, cSt	8.91	7.76
Iron Content, ppm	2	198

D5185	New Fluid (ppm)
Ba	<1
В	2
Ca	3605
Mg	11
Р	1391
Si	6
Na	18
Zn	1684

Name: Matthew Jackson

Title: Manager

Signature:

Date:

ALLISON C- 4 PAPER FRICTION TEST

(Torque in N*m)

Sponsor Fluid Code: LO306520 Test Number: C2-8-1616

Lab Fluid Code: LO-306520 Fric. Plate Batch: LOT 6

Completion Date: 03/09/2014 Steel Plate Batch: 10/9/2008

TORQUE

	SLIP	TORQUE	TORQUE	STATIC PEAK	LOW SPEED	LOWSPEED
CYCLE	TIME	(MIDPOINT)	STATIC PEAK	- MIDPOINT	STATIC PEAK	STATIC TORQUE
100	0.52	194	242	48	243	240
500	0.56	176	296	120	310	300
1000	0.50	197	316	119	340	324
2500	0.47	213	307	94	326	313
5000	0.47	221	291	70	323	301
7500	0.47	219	276	57	282	280
10000	0.46	226	272	46	277	276

COEFFICIENT OF FRICTION

	SLIP	TORQUE	TORQUE TORQUE STA		LOW SPEED	LOWSPEED
CYCLE	TIME	(MIDPOINT)	STATIC PEAK	- MIDPOINT	STATIC PEAK	STATIC TORQUE
100	0.52	0.094	0.118	0.024	0.118	0.117
500	0.56	0.086	0.144	0.058	0.151	0.146
1000	0.50	0.096	0.154	0.058	0.166	0.158
2500	0.47	0.104	0.150	0.046	0.159	0.152
5000	0.47	0.108	0.142	0.034	0.157	0.147
7500	0.47	0.107	0.134	0.027	0.137	0.136
10000	0.46	0.110	0.132	0.022	0.135	0.134

	Li	mits	Results				
	Value	% Change	100 N	10,000 N	% Change	P/F	
Slip Time Max.	0.600	N/A	0.520	0.460	-11.54	Р	
Mid-Point Fric. Coeff. Min.	0.096	N/A	0.094	0.110	17.02	F	
Static Friction Coeff.	N/A	N/A	0.118	0.132	11.86		
Low Speed Peak Fric. Coeff.	N/A	N/A	0.118	0.135	14.41		
0.25 Second Low Speed Coeff.	N/A	N/A	0.117	0.134	14.53		

SOUTHWEST RESEARCH INSTITUTE®

ALLISON C4-PAPER FRICTION TEST

(all units in mm)

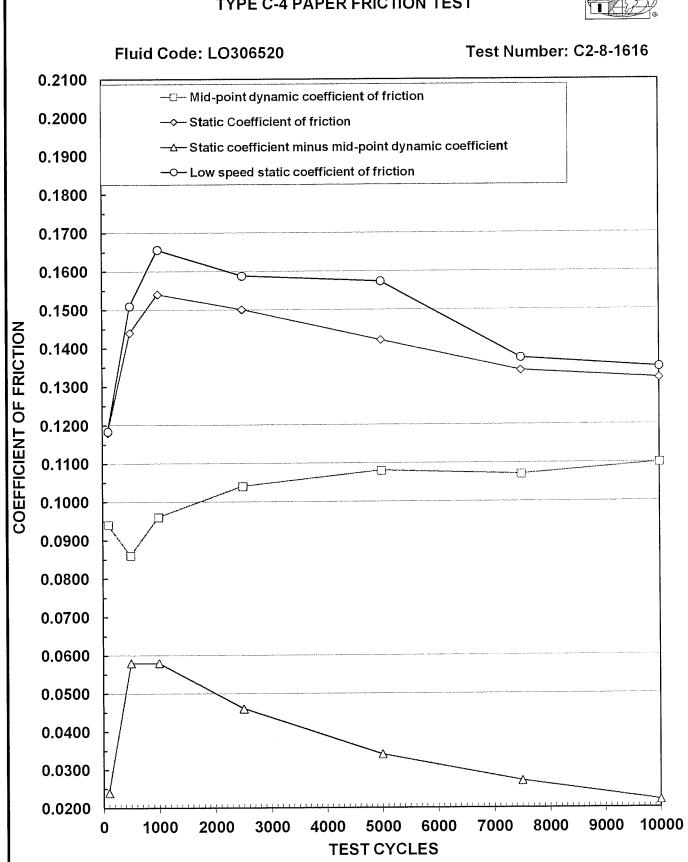
Candidate Fluid	didate Fluid: LO306520		Test Number : C2-8-1616		nber : C2-8-1616 Completion Date : 3/9/2014)14	
Lab Fluid Code	: LO-306520	S	teel Plate B	atch: 10/09/200	8	Fric Plate Ba	atch:LOT6	
	Location					Inner	Average	Outer
Plates	of Tooth	Near Inner I	Diameter	Near Outer D	Diameter	Diameter	Overall	Diameter
	(Clockwise)	Before	After	Before	After	Change	Change	Change
			FRIC	TION MATERIAL				
	Тор	2.0440	1.9590	2.0370	1.9580	0.0850		0.0790
2	120	2.0440	1.9580	2.0230	1.9450	0.0860		0.0780
	240	2.0450	1.9640	2.0380	1.9590	0.0810		0.0790
	Average					0.0840	0.0814	0.0787
	Тор	2.0430	1.9610	2.0330	1.9670	0.0820		0.0660
5	120	2.0470	1.9740	2.0470	1.9850	0.0730		0.0620
	240	2.0410	1.9630	2.0310	1.9710	0.0780		0.0600
	Average					0.0777	0.0702	0.0627
			STEEL	S SEPARATOR	S			
	Тор	1.7530	1.7530	1.7530	1.7530	0.0000		0.0000
1	120	1.7530	1.7530	1.7530	1.7530	0.0000		0.0000
	240	1.7530	1.7530	1.7530	1.7530	0.0000		0.0000
	Average					0.0000	0.0000	0.0000
	Тор	1.7460	1.7460	1.7460	1.7460	0.0000		0.0000
3	120	1.7460	1.7460	1.7460	1.7460	0.0000		0.0000
	240	1.7460	1.7460	1.7470	1.7470	0.0000	na ka a M	0.0000
	Average					0.0000	0.0000	0.0000
	Тор	1.7470	1.7470	1.7460	1.7460	0.0000		0.0000
4	120	1.7470	1.7470	1.7460	1.7460	0.0000		0.0000
	240	1.7460	1.7460	1.7460	1.7460	0.0000		0.0000
	Average					0.0000	0.0000	0.0000
	Тор	1.7500	1.7500	1.7500	1.7500	0.0000		0.0000
6	120	1.7500	1.7500	1.7500	1.7500	0.0000		0.0000
	240	1.7510	1.7510	1.7510	1.7510	0.0000		0.0000
	Average	With the out states				0.0000	0.0000	0.0000

PLATE CONDITION AT E.O.T.:

(Anything Unusual)

PLATES IN GOOD CONDITION

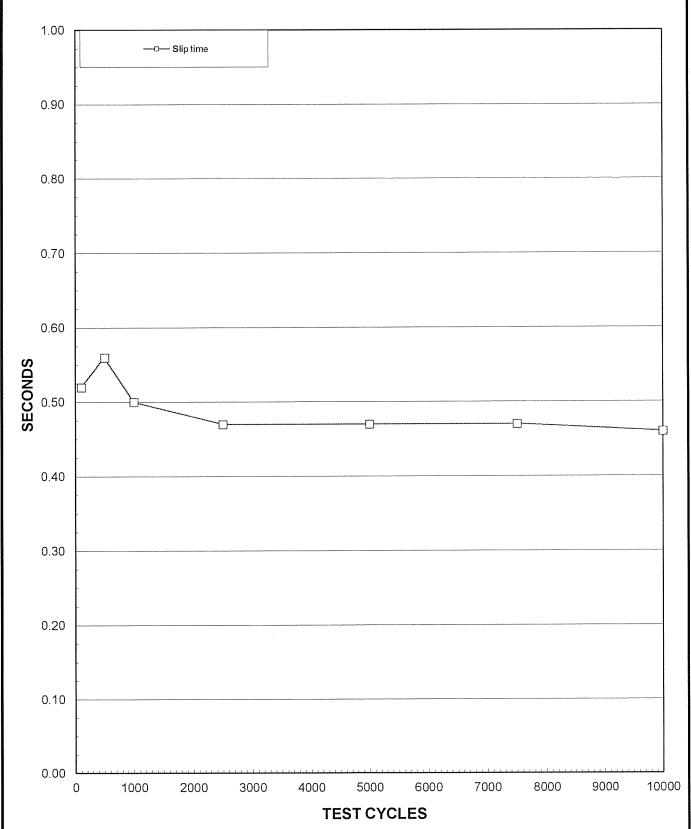
Test Date and Operator's Name:


3/7/2014 JGUERRERO

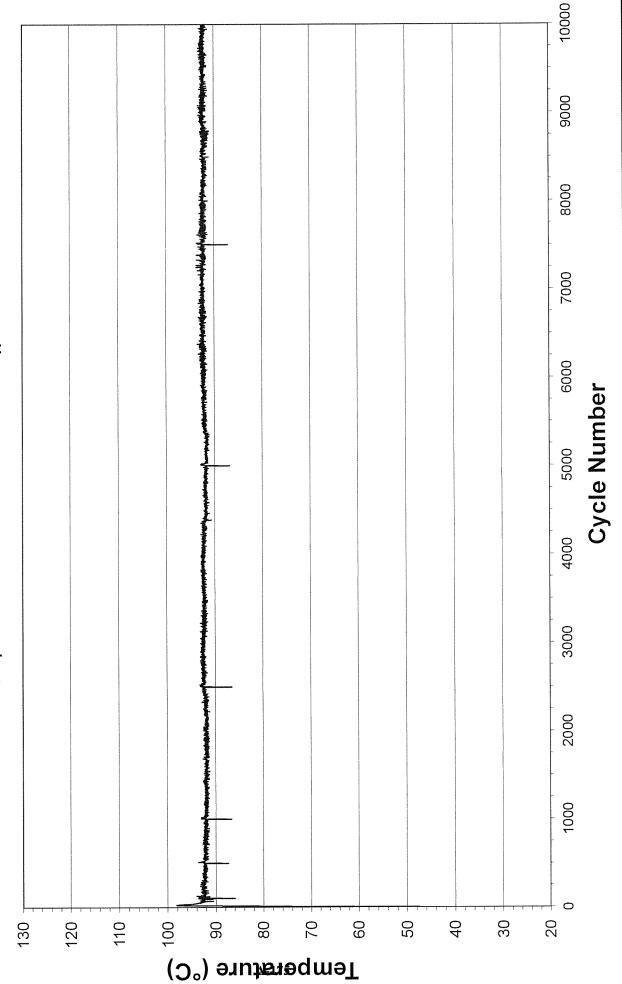
Pack ID#: 5152

Reviewed By (Signature and Date)

ALLISON TRANSMISSION FLUID TYPE C-4 PAPER FRICTION TEST



ALLISON TRANSMISSION FLUID TYPE C-4 PAPER FRICTION TEST


Fluid Code: LO306520 Test Number: C2-8-1616

LO306520 C2-8-1616

DYNAMIC TRACES

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

Time of Test: 9:12:37

Test Number: C2-8-1616

Fluid Code: LO306520

Cycle Number:

(93.3 ± 3.0 °C) 79.7 °C Temperature:

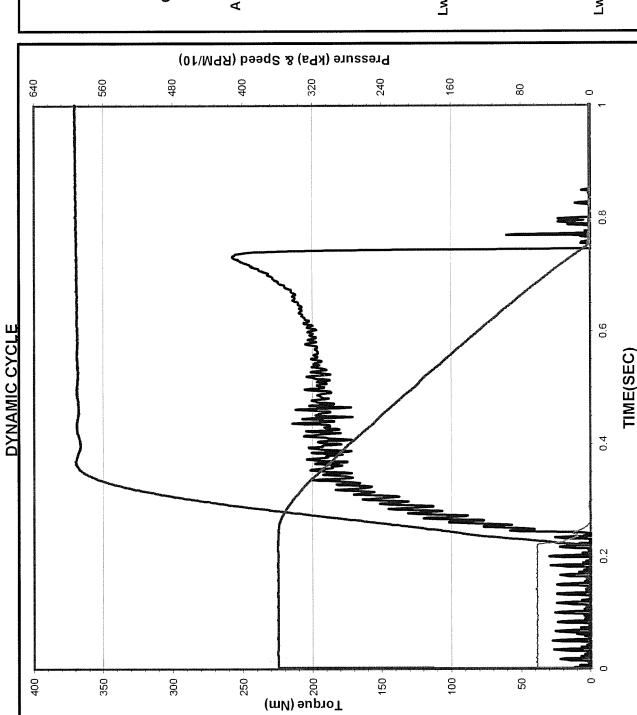
588 kPa (586 ± 7 KPa) 0.14 Sec Apply Pressure:

(0.15 ± 0.02 Sec) 18.5 KJ Energy:

Apply Rate:

Engage Time:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.546 Sec


187 N*m 0.2 Sec Dyn: Midpoint Dyn:

183 N*m 255 N*m LwSpd Dynamic:

Coefficient of Friction

0.091 0.089 0.124 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Date of Test: 3/7/2014

Time of Test: 9:35:08

Test Number: C2-8-1616 Fluid Code: LO306520

66 Cycle Number:

91.1 °C Temperature:

(93.3 ± 3.0 °C) **589 kPa** (586 ± 7 KPa) Apply Pressure:

0.14 Sec Apply Rate:

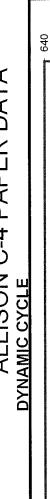
(0.15 ± 0.02 Sec) 18.5 KJ Energy:

(18.7 ± 0.40 KJ) 0.524 Sec Engage Time:

Torque

0.2 Sec Dyn: Midpoint Dyn:

192 N*m 195 N*m 243 N*m LwSpd Dynamic:


Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

0.094 0.095 0.119

Test Number: C2-8-1616 Fluid Code: LO306520

560

100 Cycle Number:

Temperature:

480

300

350

400

91.2 °C (93.3 ± 3.0 °C) 589 kPa (586 ± 7 KPa) Apply Pressure:

400

0.14 Sec Apply Rate:

 $(0.15 \pm 0.02 \, \text{Sec})$ 18.5 KJ Energy:

Pressure (kPa) & Speed (RPM/10)

320

Torque (Nm)

250

 $(18.7 \pm 0.40 \text{ KJ})$ **0.522 Sec** Engage Time:

Torque

240

189 N*m 0.2 Sec Dyn: Midpoint Dyn:

194 N*m 239 N*m LwSpd Dynamic:

160

100

150

22

8

0.092 .2 Sec Dyn:

Coefficient of Friction

0.095

Midpoint Dyn:

LwSpd Dynamic:

0.8

9.0

TIME(SEC)

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

640

Test Number: C2-8-1616

560

350

8

300

Fluid Code: LO306520

85.9 °C Cycle Number: Temperature:

480

101

589 kPa (586 ± 7 KPa) (93.3 ± 3.0 °C) Apply Pressure:

0.14 Sec Apply Rate:

(0.15 ± 0.02 Sec) 18.5 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.524 Sec

Engage Time:

192 N*m 0.2 Sec Dyn: Midpoint Dyn:

194 N*m 243 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn:

0.094 0.095 0.119 Midpoint Dyn: LwSpd Dynamic:

Pressure (kPa) & Speed (RPM/10) 400 320 240 160 8 0.8 9.0 TIME(SEC)

100

20

150

Torque (Mm)

250

Test Number: C2-8-1616

Fluid Code: LO306520

499 Cycle Number:

Temperature:

91.8 °C (93.3 ± 3.0 °C) 589 kPa (586 ± 7 KPa) 0.13 Sec Apply Pressure:

Apply Rate:

(0.15 ± 0.02 Sec) 18.5 KJ Energy:

(18.7 ± 0.40 KJ) 0.555 Sec Engage Time:

Torque

175 N*m 0.2 Sec Dyn: Midpoint Dyn:

176 N*m 296 N*m LwSpd Dynamic:

Coefficient of Friction

0.085 0.086 0.144 LwSpd Dynamic:

.2 Sec Dyn: Midpoint Dyn:

Pressure (kPa) & Speed (RPM/10) 640 560 480 9 320 240 160 8 9.0 DYNAMIC CYCLE TIME(SEC) 9.4 0 Torque (Nm) 100 2 320 300 250 150 8

Time of Test: 11:15:40 Date of Test: 3/7/2014

Fluid Code: LO306520

Test Number: C2-8-1616

500

92.0 °C (93.3 ± 3.0 °C) Cycle Number: Temperature:

589 kPa (586 ± 7 KPa) Apply Pressure:

0.13 Sec Apply Rate:

(0.15 ± 0.02 Sec) 18.5 KJ Energy:

(18.7 ± 0.40 KJ) 0.554 Sec Engage Time:

173 N*m 176 N*m 300 N*m 0.2 Sec Dyn: Midpoint Dyn:

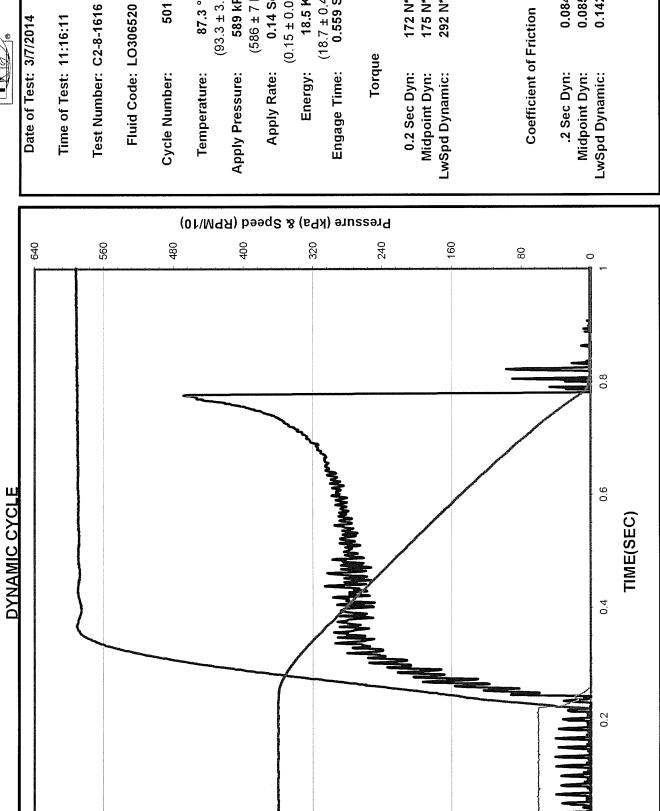
LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

0.084 0.086 0.146


Pressure (kPa) & Speed (RPM/10) 640 560 480 400 320 240 160 8 9.0 DYNAMIC CYCLE TIME(SEC) 9.0 Torque (Nm) 100 20 320 300 250 150 400

0.084 0.085 0.142

ALLISON C-4 PAPER DATA

0.14 Sec (0.15 ± 0.02 Sec) 18.5 KJ

589 kPa (586 ± 7 KPa) (93.3 ± 3.0 °C)

87.3 °C

501

(18.7 ± 0.40 KJ) 0.559 Sec

172 N*m 175 N*m 292 N*m

150

100

20

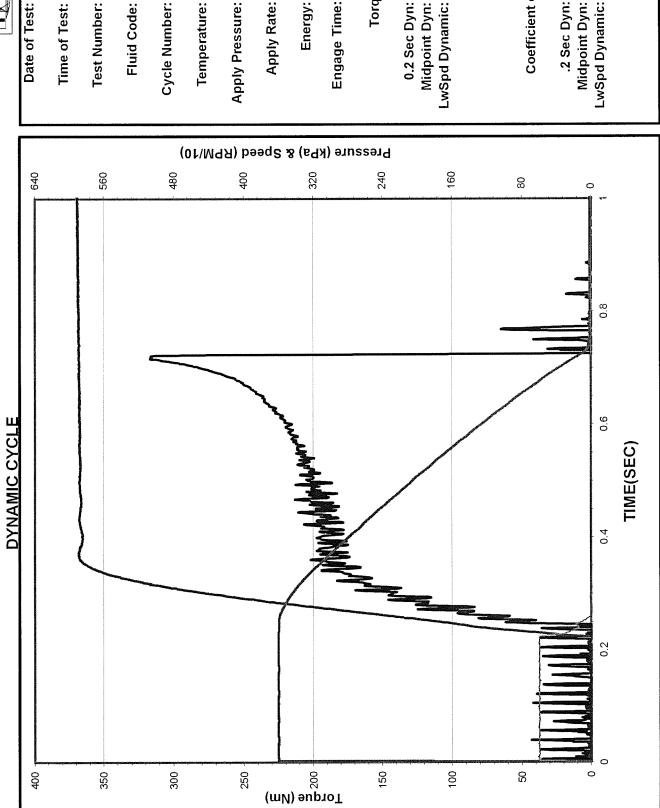
Torque (Nm)

250

300

320

400


0.094 0.096 0.154

.2 Sec Dyn: Midpoint Dyn:

Coefficient of Friction

ALLISON C-4 PAPER DATA

(0.15 ± 0.02 Sec) 18.6 KJ

Energy:

Apply Rate:

587 kPa (586 ± 7 KPa) 0.13 Sec

(93.3 ± 3.0 °C)

92.1 °C

Temperature:

666

Test Number: C2-8-1616

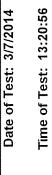
Time of Test: 13:20:41

Date of Test: 3/7/2014

Fluid Code: LO306520

 $(18.7 \pm 0.40 \text{ KJ})$ **0.5 Sec**

Engage Time:


198 N*m 315 N*m 194 N*m

0.2 Sec Dyn:

Midpoint Dyn:

Test Number: C2-8-1616

1000 Cycle Number:

Fluid Code: LO306520

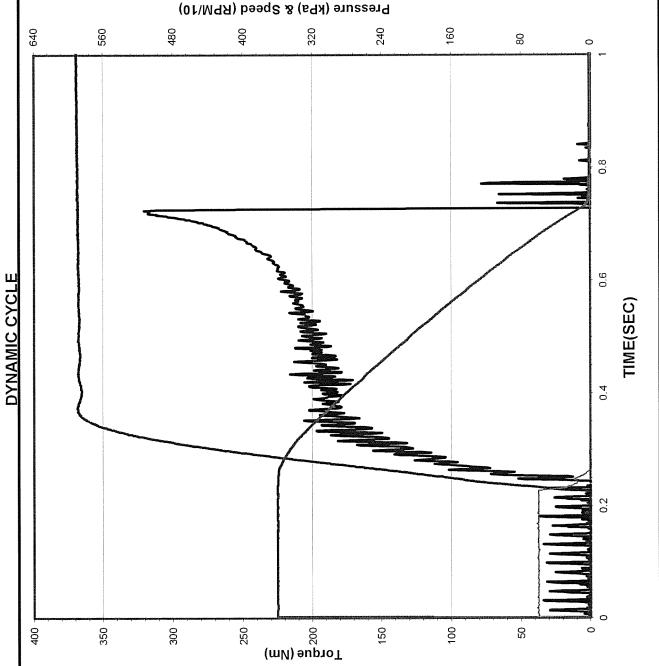
92.0 °C Temperature:

587 kPa (586 ± 7 KPa) 0.14 Sec (0° 0.8 ± 8.86) Apply Pressure:

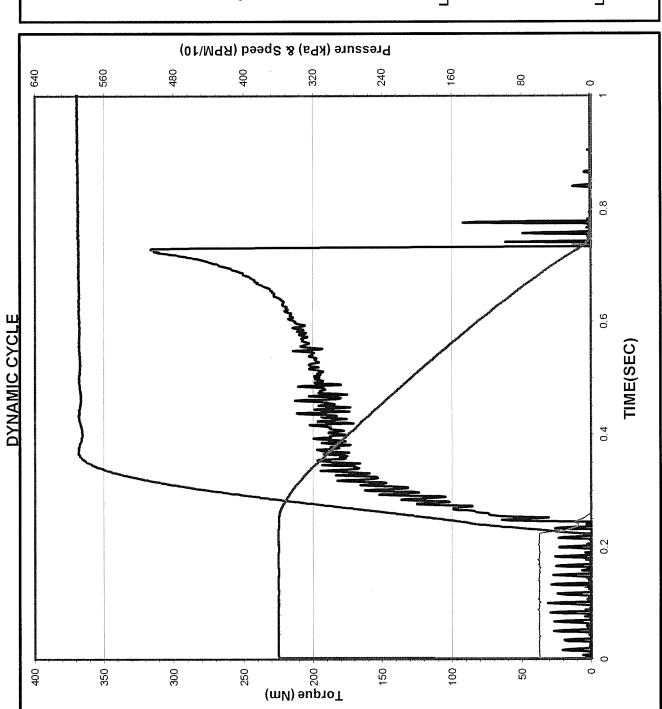
Apply Rate:

(0.15 ± 0.02 Sec) 18.6 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ **0.5 Sec** Engage Time:


Torque

194 N*m 199 N*m 314 N*m 0.2 Sec Dyn: Midpoint Dyn:


LwSpd Dynamic:

Coefficient of Friction

0.094 0.097 0.153 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Date of Test: 3/7/2014

Test Number: C2-8-1616 Time of Test: 13:21:27

Fluid Code: LO306520

ე, 9.98 1001 Cycle Number: Temperature:

(0° 0.5 ± 8.6°) Apply Pressure:

588 kPa (586 ± 7 KPa) 0.14 Sec Apply Rate:

(0.15 ± 0.02 Sec) 18.6 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.508 Sec Engage Time:

Torque

187 N*m 195 N*m 0.2 Sec Dyn: Midpoint Dyn:

318 N*m

LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

0.091 0.095 0.155

C4 Reports Version 1.0.8.3

ALLISON C-4 PAPER DATA

Time of Test: 19:35:57

Fluid Code: LO306520

Test Number: C2-8-1616

2499 Cycle Number: **92.6 °C** (93.3 ± 3.0 °C) Temperature:

588 kPa (586 ± 7 KPa) Apply Pressure:

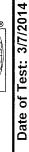
0.13 Sec (0.15 ± 0.02 Sec) 18.6 KJ Apply Rate:

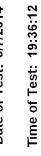
 $(18.7 \pm 0.40 \text{ KJ})$ 0.472 Sec Energy:

Engage Time:

Torque

0.2 Sec Dyn:


208 N*m 215 N*m 309 N*m Midpoint Dyn: LwSpd Dynamic:


Coefficient of Friction

0.101 0.105 0.150 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

Pressure (kPa) & Speed (RPM/10) 400 260 480 320 240 160 640 8 0.8 DYNAMIC CYCLE TIME(SEC) 4.0 0.2 ò Torque (Nm) 100 350 300 250 22 8 150

Test Number: C2-8-1616

2500 Cycle Number:

Fluid Code: LO306520

92.1 °C Temperature:

588 kPa (586 ± 7 KPa) (93.3 ± 3.0 °C) Apply Pressure:

(0.15 ± 0.02 Sec) 18.6 KJ 0.13 Sec Apply Rate:

Energy:

(18.7 ± 0.40 KJ) **0.472 Sec** Engage Time:

Torque

208 N*m 0.2 Sec Dyn:

214 N*m 311 N*m Midpoint Dyn: LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.101 0.104 0.151 LwSpd Dynamic:

Pressure (kPa) & Speed (RPM/10) 400 640 560 480 320 240 160 8 DYNAMIC CYCLE TIME(SEC) 0.4 0.2 Torque (Nm) 100 320 300 2 0 400 250 150

Test Number: C2-8-1616

Fluid Code: LO306520

86.5 °C (93.3 ± 3.0 °C) 2501 Cycle Number: Temperature:

Apply Pressure:

588 kPa (586 ± 7 KPa) 0.14 Sec Apply Rate:

(0.15 ± 0.02 Sec) 18.6 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.478 Sec

Engage Time:

Torque

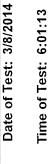
0.2 Sec Dyn:

209 N*m 211 N*m 302 N*m Midpoint Dyn: LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn:

0.102 0.103 0.147


Midpoint Dyn: LwSpd Dynamic:

Pressure (kPa) & Speed (RPM/10) 400 160 640 260 480 320 240 8 DYNAMIC CYCLE TIME(SEC) 4.0 Torque (Mm) 100 Ö 300 250 20 350 150 8

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

640

Test Number: C2-8-1616

560

Fluid Code: LO306520

4999 Cycle Number:

480

300

350

 $(93.3 \pm 3.0 \, ^{\circ}\text{C})$ 91.9 °C Temperature:

588 kPa (586 ± 7 KPa) 0.14 Sec Apply Rate: Apply Pressure:

(0.15 ± 0.02 Sec) 18.7 KJ Energy:

Pressure (kPa) & Speed (RPM/10)

320

400

 $(18.7 \pm 0.40 \text{ KJ})$ 0.464 Sec Engage Time:

Torque

240

0.2 Sec Dyn:

221 N*m 222 N*m 298 N*m Midpoint Dyn: LwSpd Dynamic:

160

100

22

Coefficient of Friction

80

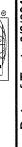
LwSpd Dynamic:

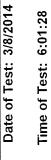
0.108 0.108 0.145 .2 Sec Dyn: Midpoint Dyn:

C4 Reports Version 1.0.8.3

TIME(SEC)

A-190


150


Torque (Mm)

250

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

640

Test Number: C2-8-1616

560

350

400

300

Fluid Code: LO306520

5000 Cycle Number:

480

Temperature:

91.5 °C (93.3 ± 3.0 °C) Apply Pressure:

400

588 kPa (586 ± 7 KPa) 0.13 Sec Apply Rate:

(0.15 ± 0.02 Sec) 18.6 KJ Energy:

Pressure (kPa) & Speed (RPM/10)

320

 $(18.7 \pm 0.40 \text{ KJ})$ 0.464 Sec Engage Time:

240

0.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

160

100

20

218 N*m 221 N*m 293 N*m

8

Coefficient of Friction

0.106 0.108 0.143 .2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

C4 Reports Version 1.0.8.3

TIME(SEC)

4.0

0.2

ò

150

Torque (Nm)

250

Time of Test: 6:02:00

Fluid Code: LO306520 Test Number: C2-8-1616

5001 Cycle Number: **86.8 °C** (93.3 ± 3.0 °C) Temperature:

Apply Pressure:

588 kPa (586 ± 7 KPa) 0.14 Sec Apply Rate:

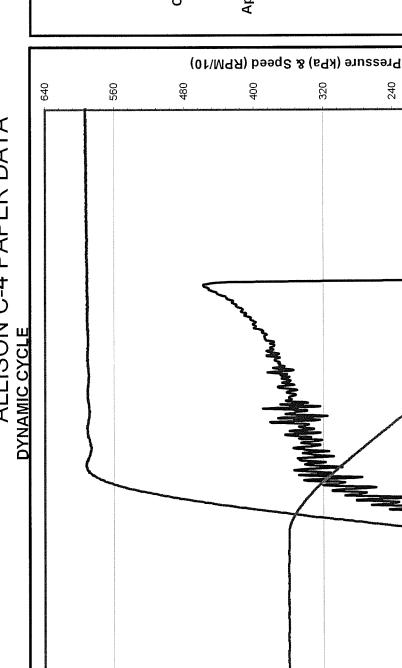
(0.15 ± 0.02 Sec) 18.6 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.469 Sec Engage Time:

Torque

0.2 Sec Dyn:

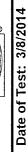
215 N*m 219 N*m 282 N*m Midpoint Dyn: LwSpd Dynamic:

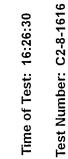

Coefficient of Friction

.2 Sec Dyn:

0.105 0.107 0.137 Midpoint Dyn: LwSpd Dynamic:

Pressure (kPa) & Speed (RPM/10) 400 160 560 320 640 480 8 DYNAMIC CYCLE TIME(SEC) 0.2 Torque (Nm) 100 300 20 320 250 150 400





350

8

300

Fluid Code: LO306520

92.3 °C 7499 Cycle Number:

(93.3 ± 3.0 °C) Temperature: Apply Pressure:

589 kPa (586 ± 7 KPa) 0.13 Sec Apply Rate:

(0.15 ± 0.02 Sec) 18.6 KJ Energy:

320

Torque (Nm)

250

 $(18.7 \pm 0.40 \text{ KJ})$ 0.473 Sec Engage Time:

Torque

240

216 N*m 0.2 Sec Dyn: Midpoint Dyn:

220 N*m 279 N*m LwSpd Dynamic:

160

100

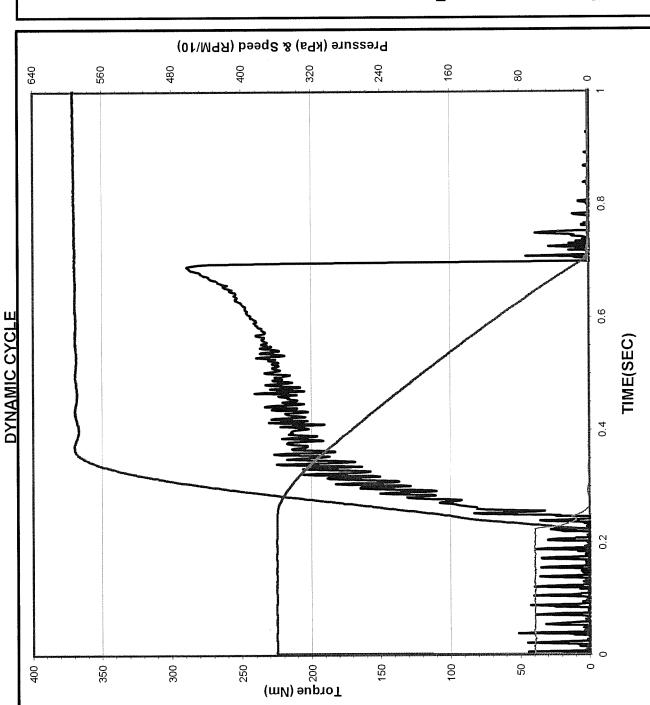
150

20

0

Coefficient of Friction

8


0.105 0.107 0.136 LwSpd Dynamic:

.2 Sec Dyn: Midpoint Dyn:

TIME(SEC)

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

Date of Test: 3/8/2014

Test Number: C2-8-1616

Time of Test: 16:26:45

Fluid Code: LO306520

7500 Cycle Number: Temperature:

92.6 °C (93.3 ± 3.0 °C) 589 kPa (586 ± 7 KPa) 0.13 Sec (0.15 ± 0.02 Sec) Apply Pressure:

Apply Rate:

18.6 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.473 Sec Engage Time:

Torque

0.2 Sec Dyn: Midpoint Dyn:

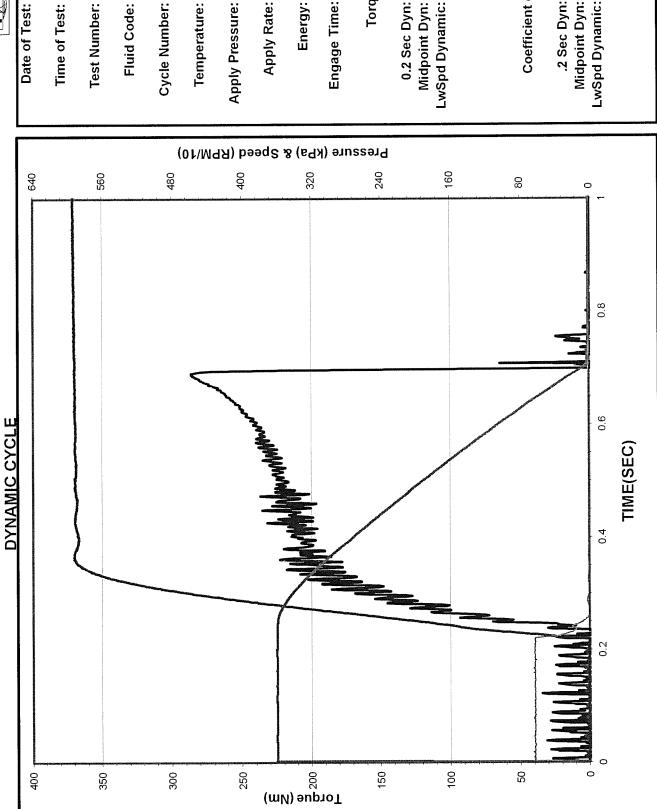
215 N*m 220 N*m 275 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

0.105 0.107 0.134 LwSpd Dynamic:

0.103 0.105 0.133


.2 Sec Dyn: Midpoint Dyn:

Coefficient of Friction

C4 Reports Version 1.0.8.3

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

(0.15 ± 0.02 Sec) 18.6 KJ

Energy:

0.14 Sec

Apply Rate:

(93.3 ± 3.0 °C) **589 kPa** (586 ± 7 KPa)

Apply Pressure:

87.0 °C

Temperature:

7501

Cycle Number:

Test Number: C2-8-1616

Time of Test: 16:27:16

Date of Test: 3/8/2014

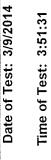
Fluid Code: LO306520

 $(18.7 \pm 0.40 \text{ KJ})$ 0.478 Sec

Engage Time:

211 N*m 216 N*m 274 N*m

0.2 Sec Dyn:


Midpoint Dyn:

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

640

Test Number: C2-8-1616

560

350

300

Fluid Code: LO306520

9666 Cycle Number:

480

91.8 °C Temperature:

590 kPa (586 ± 7 KPa) (93.3 ± 3.0 °C) Apply Pressure:

400

0.14 Sec Apply Rate:

Pressure (kPa) & Speed (RPM/10)

320

(0.15 ± 0.02 Sec) 18.7 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.464 Sec Engage Time:

Torque

224 N*m 0.2 Sec Dyn:

226 N*m 273 N*m Midpoint Dyn: LwSpd Dynamic:

160

100

22

8

0.109 0.110 0.133 Coefficient of Friction .2 Sec Dyn:

Midpoint Dyn: LwSpd Dynamic:

TIME(SEC)

A-196

150

Torque (Mm)


250

C4 Reports Version 1.0.8.3

ALLISON C-4 PAPER DATA

Test Number: C2-8-1616

Fluid Code: LO306520

6666 Cycle Number: 92.3 °C Temperature:

(93.3 ± 3.0 °C) **590 kPa** (586 ± 7 KPa) Apply Pressure:

 $(0.15 \pm 0.02 \, \text{Sec})$ 0.14 Sec Apply Rate:

Pressure (kPa) & Speed (RPM/10)

18.6 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.465 Sec

Engage Time:

Torque

0.2 Sec Dyn: Midpoint Dyn:

225 N*m 226 N*m 268 N*m LwSpd Dynamic:

Coefficient of Friction

.2 Sec Dyn: Midpoint Dyn:

LwSpd Dynamic:

0.110 0.110 0.131

ALLISON C-4 PAPER DATA DYNAMIC CYCLE

640

Test Number: C2-8-1616

560

Fluid Code: LO306520

10000 Cycle Number:

480

300

320

8

92.3 °C Temperature:

590 kPa (586 ± 7 KPa) 0.14 Sec (93.3 ± 3.0 °C) Apply Pressure:

400

Apply Rate:

Pressure (kPa) & Speed (RPM/10)

320

Torque (Mm)

250

(0.15 ± 0.02 Sec) 18.6 KJ Energy:

 $(18.7 \pm 0.40 \text{ KJ})$ 0.465 Sec Engage Time:

221 N*m 0.2 Sec Dyn:

226 N*m 275 N*m Midpoint Dyn: LwSpd Dynamic:

160

100

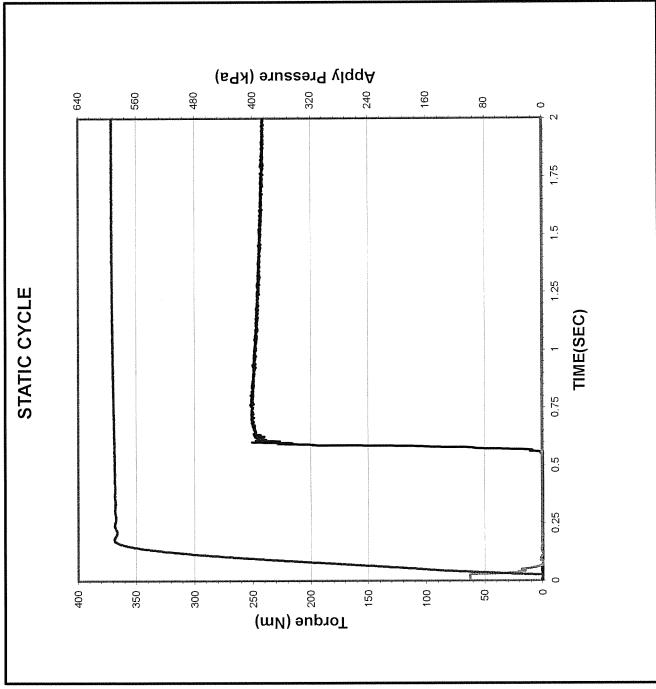
20

150

Coefficient of Friction

80

0.108 0.110 0.134


.2 Sec Dyn: Midpoint Dyn: LwSpd Dynamic:

> 9.0 TIME(SEC)

STATIC TRACES

Date of Test: 3/7/2014

Time of Test: 9:12:53

Test Number: C2-8-1616 Fluid Code: LO306520

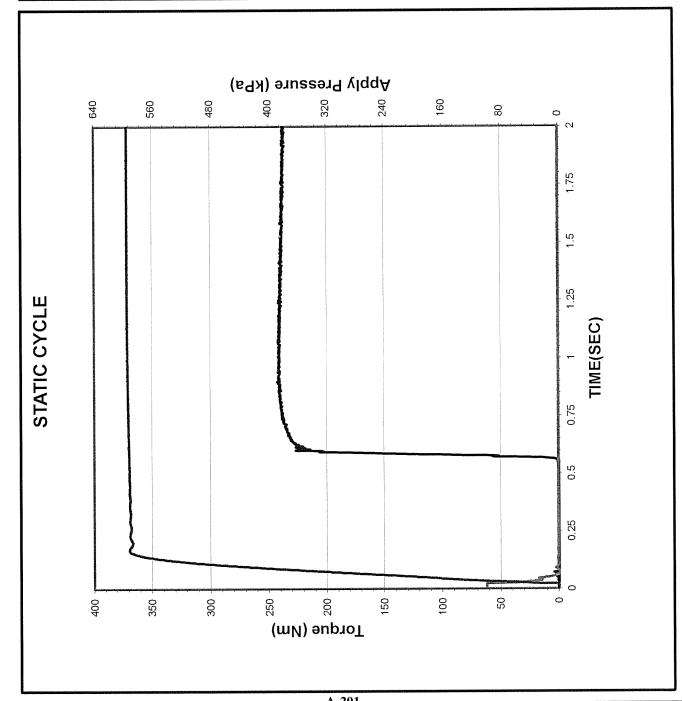
Cycle Number:

10

STATIC CYCLE

Apply Pressure: At .25 Second:

588 kPa


Torque Static Peak: .25 Second:

252 Nm 250 Nm

Coefficient of Friction

Static Peak: .25 Second:

Date of Test: 3/7/2014

Time of Test: 9:35:39

Fluid Code: LO306520

Test Number: C2-8-1616

Cycle Number:

100

STATIC CYCLE

Apply Pressure: At .25 Second:

589 kPa

Torque Static Peak: .25 Second:

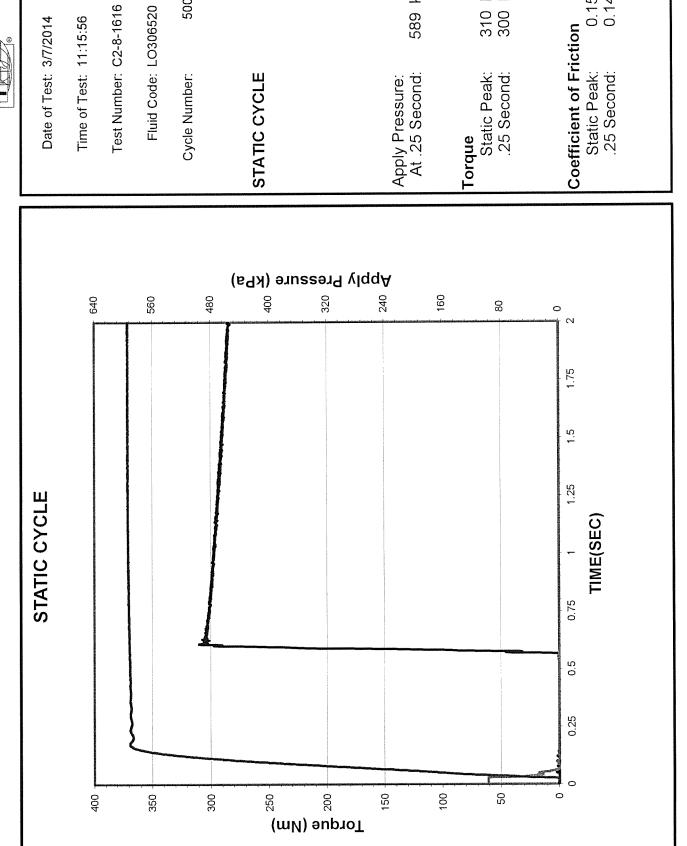
243 Nm 240 Nm

Coefficient of Friction

Static Peak: .25 Second:

0.118

310 Nm 300 Nm


0.151

589 kPa

ALLISON C-4 PAPER DATA

500

C4 Reports Version 1.0.8.3

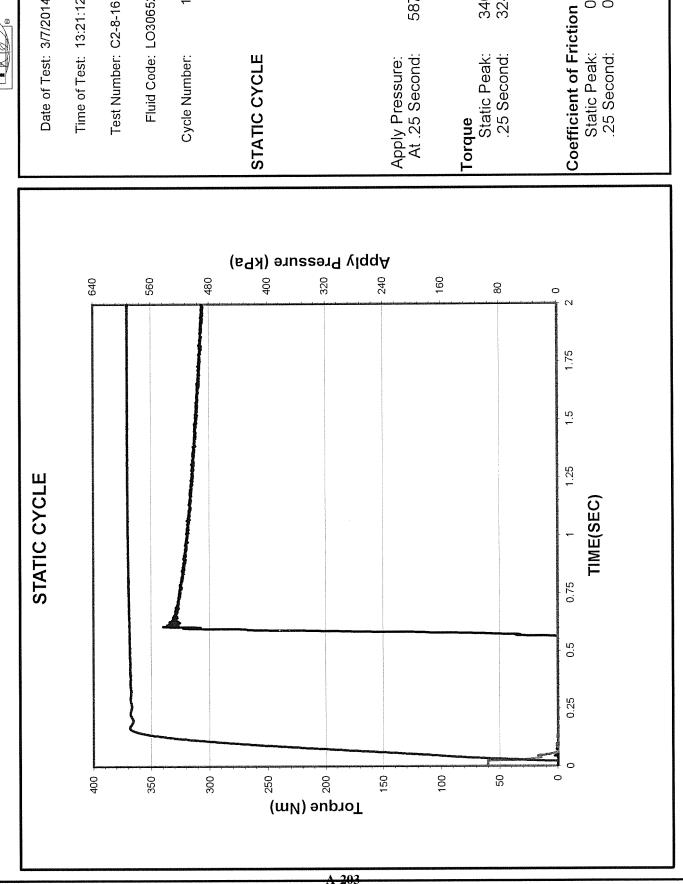
340 Nm 324 Nm

0.166

Static Peak: .25 Second:

587 kPa

ALLISON C-4 PAPER DATA


1000

Cycle Number:

Test Number: C2-8-1616

Time of Test: 13:21:12

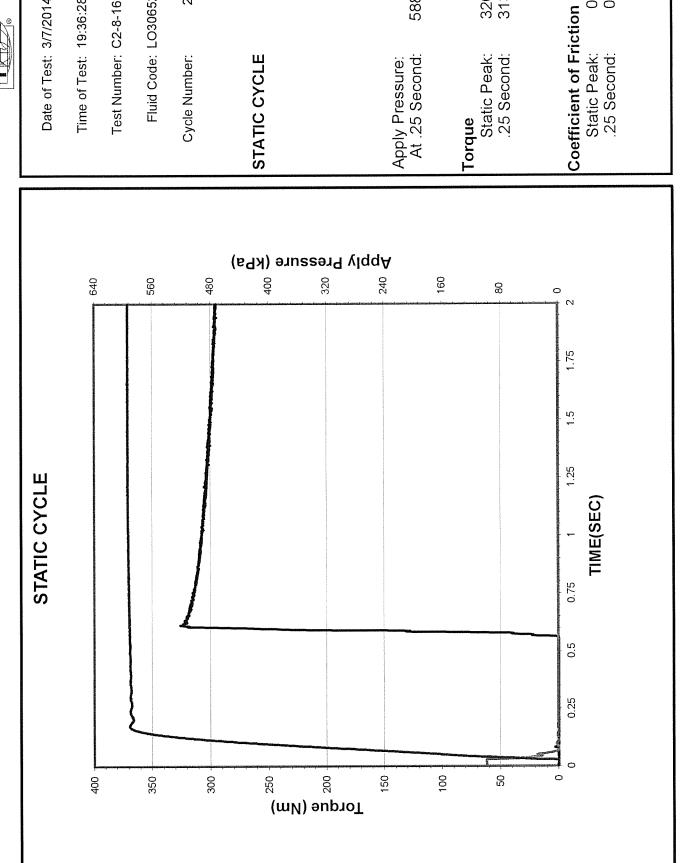
Date of Test: 3/7/2014

326 Nm 313 Nm

0.159

588 kPa

ALLISON C-4 PAPER DATA


Date of Test: 3/7/2014

Time of Test: 19:36:28

2500

Cycle Number:

Test Number: C2-8-1616

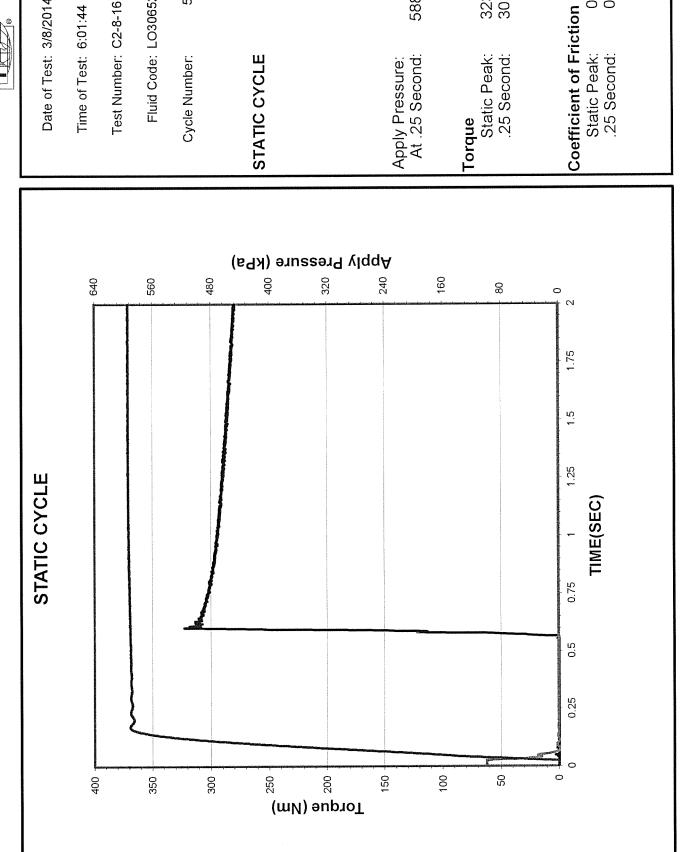
323 Nm 301 Nm

0.157 0.146

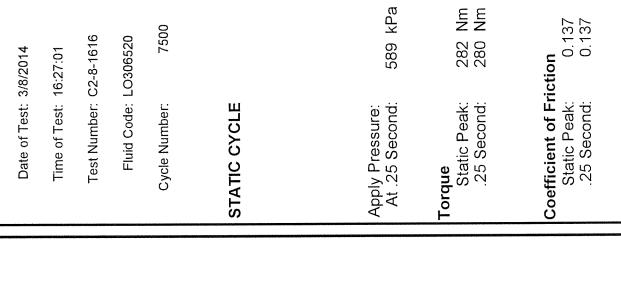
Static Peak: .25 Second:

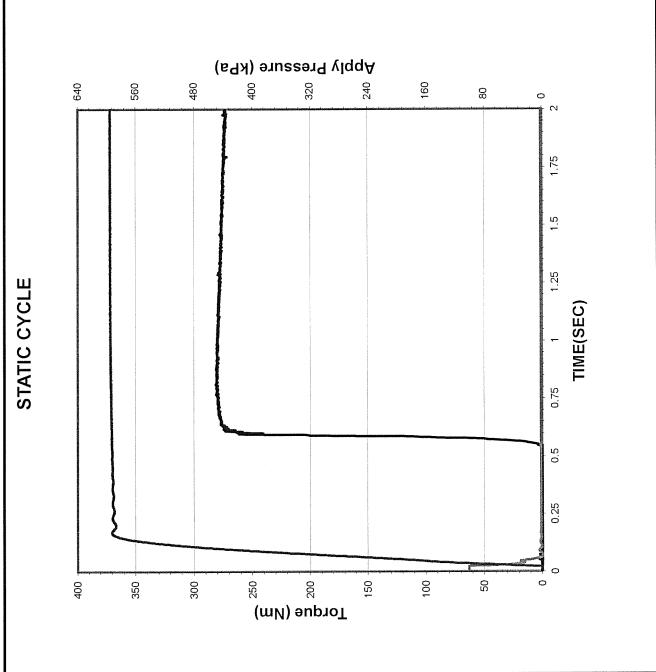
588 KPa

ALLISON C-4 PAPER DATA

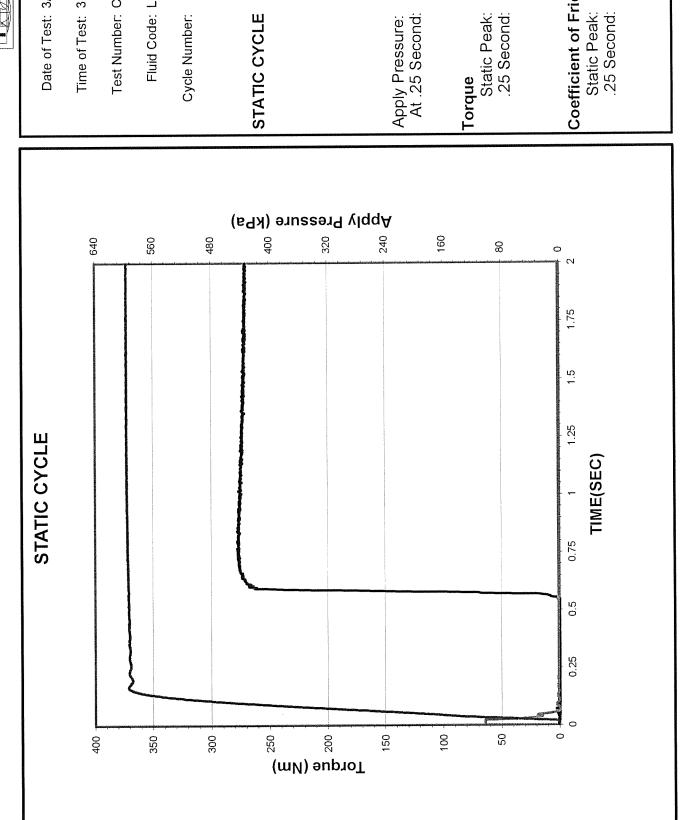

Date of Test: 3/8/2014

Time of Test: 6:01:44


5000


Cycle Number:

Test Number: C2-8-1616



Date of Test: 3/9/2014

Test Number: C2-8-1616 Time of Test: 3:52:17

Fluid Code: LO306520

Cycle Number:

10000

STATIC CYCLE

Apply Pressure: At .25 Second:

590 KPa

E E 277 276

Coefficient of Friction

Static Peak: .25 Second:

SOUTHWEST RESEARCH INSTITUTE® San Antonio, Texas

Fuels and Lubricants Research Division

Report on

CATERPILLAR TO-4 FRICTION PROPERTIES, VC-70 SEQUENCE 1220 ONLY

Conducted for

ARMY LAB

Oil Code: **LO306520**

Test Number: A-133-I

April 9, 2014

Submitted by:

Brian Koehler
Principal Engineer

Specialty & Driveline Fluid Evaluation

The results of this report relate only to the fluid tested. This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute®.

CATERPILLAR TO-4 FRICTION PROPERTIES, VC-70 Summary Sheet

Company:	ARMY LAB						
Test start date: End of test date: Oil Code:	4/9/2014 4/9/2014 LO306520						
Sequence Number	1219	1220	1221	1222	1223	1224	Friction Retention
Dynamic Coefficient Vs. Cycle:		F					
Dynamic Coefficient Vs. Load:		F					
Dynamic Coefficient Vs. Speed:		Р					
Energy Limit:		P					
Static Coefficient Vs. Load:		P					
Static Coefficient Vs. Speed:		P					
Energy Limit:		P					
Total Wear:		0.012					
Wear Limit:	0.030	0.040	0.070	0.070	0.070	0.040	
Comments: The results are compa	This testing wared to TO-4 testi		on a referer	nced test sta	nd using 200	9 batch part	S.

P = Pass

N/A = Not Applicable

Test name: A-133-l
Test date: 4/9/2014
Test description: LO306520

Oil type:

Viscosity: SAE 30

Miscellaneous:

Software version: 3.12

Run name & desc: A-133-I Run date: 4/9/2014 Oil temperature: 82

Oil temperature: 82
Oil flow rate: 4

Operator: Remarks:

Sequence name: 1220

Remarks:

Number of cylces run: 1195

Machine: 1131

Coast down check run:

Result:(sec)
Inertia check run:
Result(n·m·s²):

Disc name & desc: 1Y0709

Material: SINTERED BRONZE

Groove pattern: Miscellaneous:

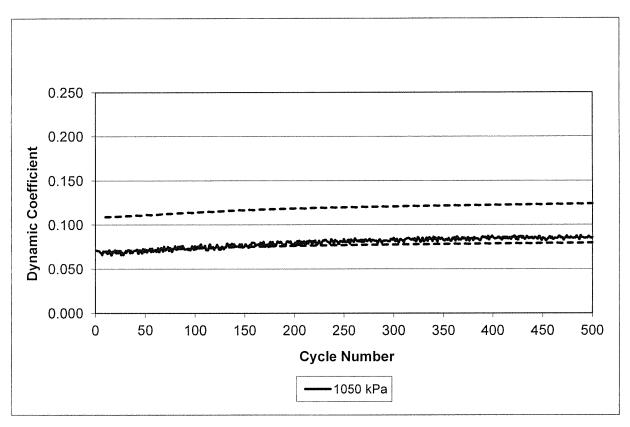
Outer diameter(mm): 285.8008
Inner diameter(mm): 223.19996
Mean radius(mm): 128.2100001
Batch Number: 007130C800012

Remarks:

Plate Name & desc: 8E4095 Surface: 0.95

Miscellaneous:

Batch Number: 007130C800012


Remarks:

Report limit name: R-004-I Limit file generated: 8/22/2012

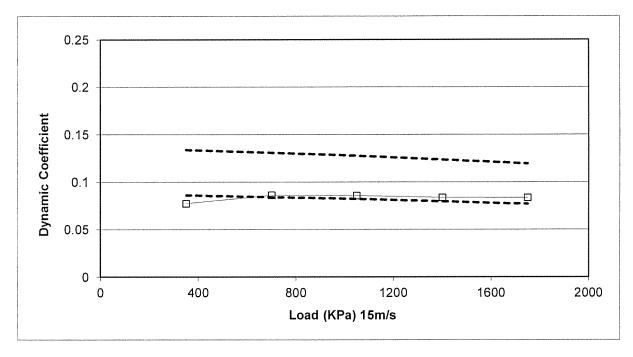
Report format name: REP1220 - SINTERED BRONZE

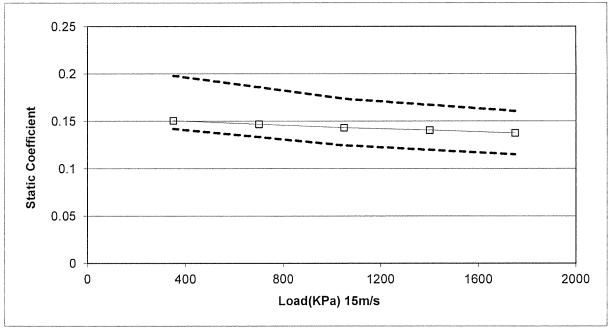
Test: A-133-I Run: A-133-I

Started on: 4/9/2014 at 07:31:28

Wear Measurements Thickness

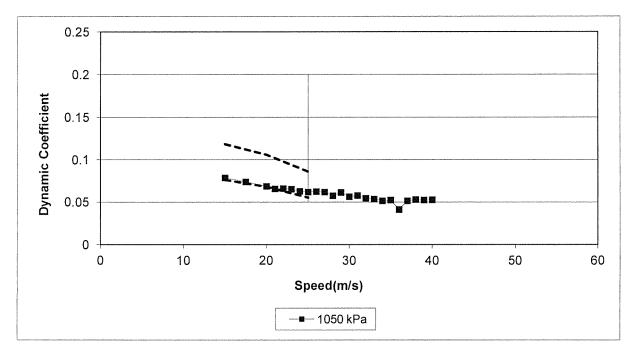
	0	uter Diame	ter	In	Inner Diameter			
Location	M1	M2	M3	M1	M2	М3		
II	4.94	4.93	4.93	4.94	4.94	4.94		
Τ	4.97	4.96	4.96	4.96	4.95	4.95		
+	4.97	4.95	4.95	4.97	4.96	4.95		
Χ	4.96	4.95	4.95	4.95	4.94	4.94		
Υ	4.96	4.95	4.95	4.96	4.95	4.95		
Z	4.95	4.94	4.94	4.95	4.94	4.94		
Average	4.96	4.95	4.95	4.95	4.95	4.94		

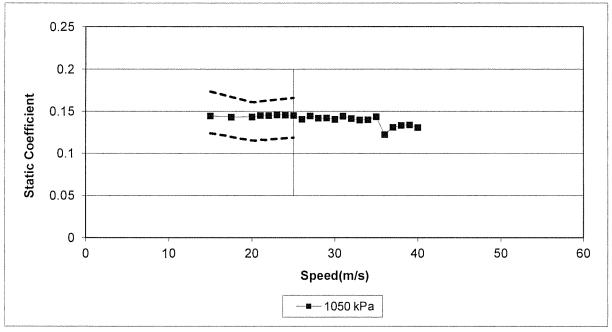

M1-M2 Compression set average wear: 0.012

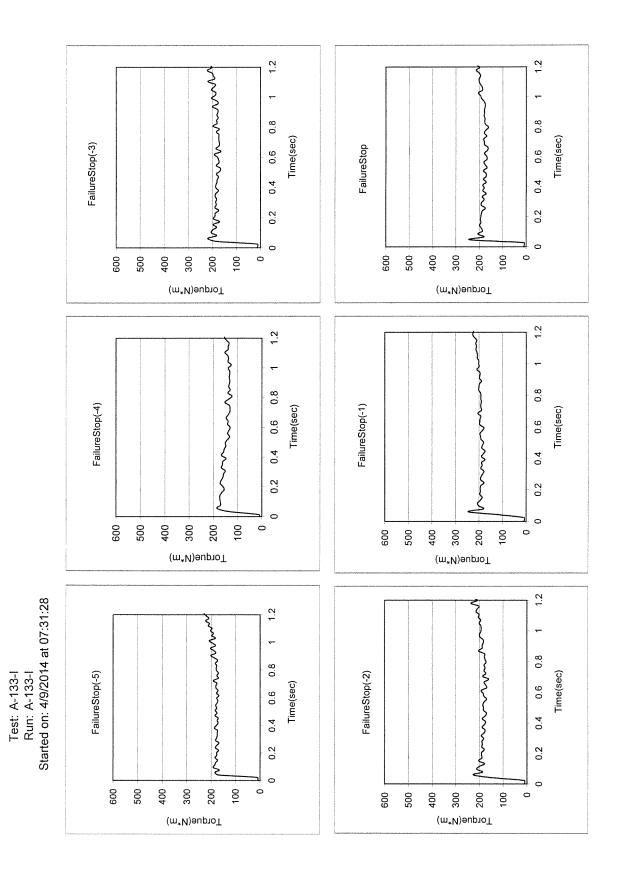

M2-M3 average Wear: 0.000

Total Wear(all measurements in mm): 0.012

Test: A-133-I Run: A-133-I


Started on: 4/9/2014 at 07:31:28





Test: A-133-I Run: A-133-I

Started on: 4/9/2014 at 07:31:28

A-214 Page 7 of 7

SOUTHWEST RESEARCH INSTITUTE® San Antonio, Texas

Fuels and Lubricants Research Division

Report on

CATERPILLAR TO-4 FRICTION PROPERTIES, VC-70 SEQUENCE 1222 ONLY

Conducted for

ARMY LAB

Oil Code: LO306520

Test Number: A-134-I

April 10, 2014

Brian Koehler Principal Engineer Specialty & Driveline Fluid Evaluation

Submitted by:

The results of this report relate only to the fluid tested.

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute®.

CATERPILLAR TO-4 FRICTION PROPERTIES, VC-70 Summary Sheet

Company:	ARMY LAB						
Test start date: End of test date: Oil Code:	4/10/2014 4/10/2014 LO306520						
Sequence Number	1219	1220	1221	1222	1223	1224	Friction Retention
Dynamic Coefficient Vs. Cycle:				F			
Dynamic Coefficient Vs. Load:			·····	F			
Dynamic Coefficient Vs. Speed:				P			
Energy Limit:				F			
Static Coefficient Vs. Load:				F			
Static Coefficient Vs. Speed:				P			
Energy Limit:				F			
Total Wear:				0.020			
Wear Limit:	0.030	0.040	0.070	0.070	0.070	0.040	
Comments: The results are compa	This testing wa		on a referer	iced test stai	nd using 200	9 batch part	S.
		<u> </u>			·····		

P = Pass

N/A = Not Applicable

Test name: A-134-I Test date: 4/10/2014

Test description:

Oil type: LO306520 Viscosity: SAE 30

Miscellaneous:

Software version: 3.12

Run name & desc: A-134-I Run date: 4/10/2014

Oil temperature: 82
Oil flow rate: 4

Operator: Remarks:

Sequence name: 1222

Remarks:

Number of cylces run: 1006

Machine: 1131

Coast down check run:

Result:(sec)
Inertia check run:
Result(n·m·s²):

Disc name & desc: 1Y0711

Material: WHEEL BRAKE PAPER

Groove pattern: Miscellaneous:

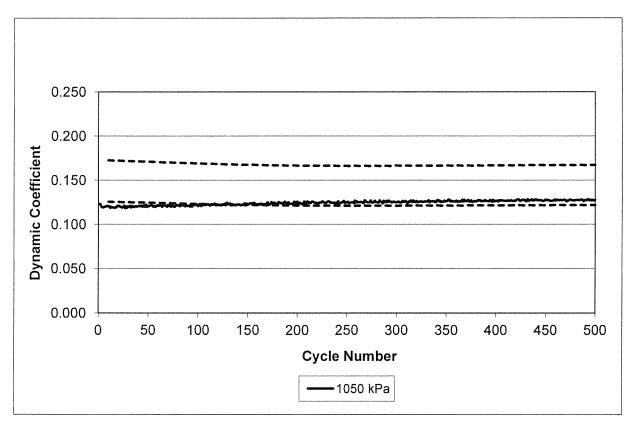
Outer diameter(mm): 285.8008
Inner diameter(mm): 223.19996
Mean radius(mm): 128.2100001
Batch Number: 06MR928188

Remarks:

Plate Name & desc: 1Y0726 Surface: 0.26

Miscellaneous:

Batch Number: 06MR928188


Remarks:

Report limit name: R-005-l Limit file generated: 8/24/2012

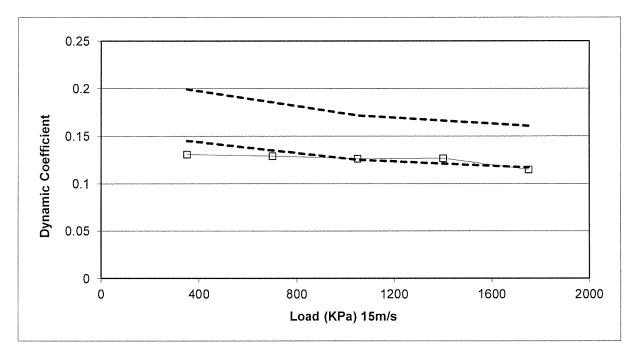
Report format name: REP1222 - WHEEL BRAKE PAPER

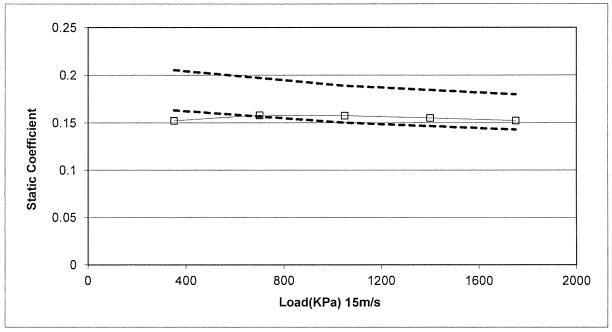
Test: A-134-I Run: A-134-I

Started on: 4/10/2014 at 07:28:55

Wear Measurements Thickness

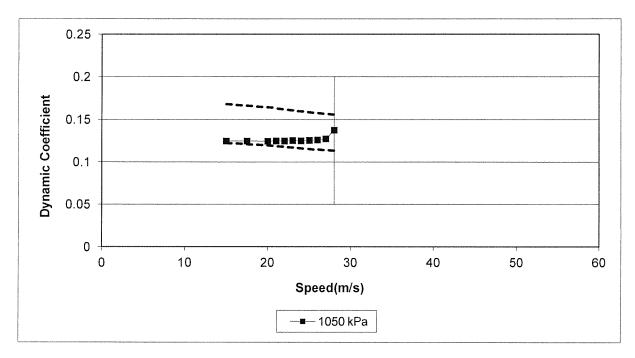
	0	uter Diame	ter	lni	ner Diamet	er
Location	M1	M2	M3	M1	M2	М3
11	4.91	4.90	4.90	4.91	4.91	4.90
Т	4.94	4.94	4.92	4.94	4.93	4.92
+	4.92	4.91	4.90	4.92	4.91	4.90
Χ	4.90	4.89	4.88	4.90	4.89	4.88
Υ	4.90	4.89	4.88	4.90	4.89	4.88
Z	4.92	4.90	4.89	4.91	4.89	4.89
Average	4.92	4.91	4.89	4.91	4.90	4.89

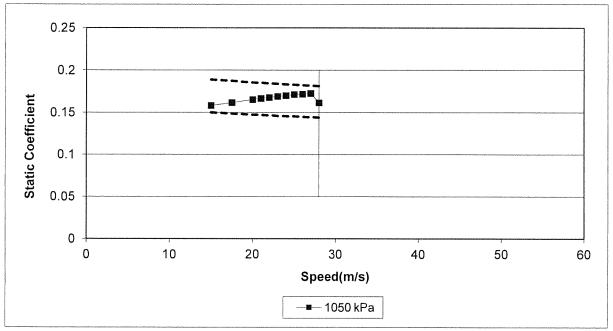

M1-M2 Compression set average wear: 0.010

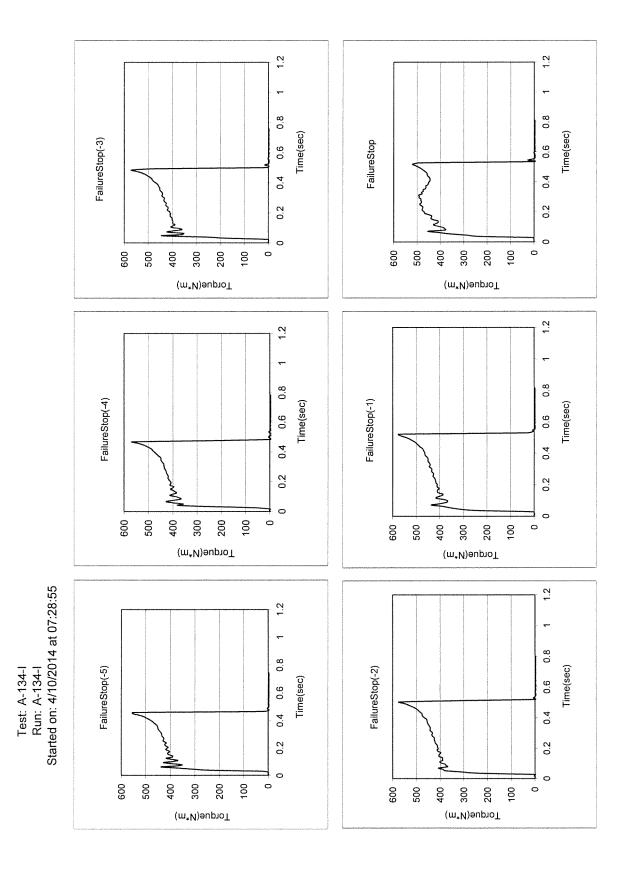

M2-M3 average Wear: 0.010

Total Wear(all measurements in mm): 0.020

Test: A-134-I Run: A-134-I


Started on: 4/10/2014 at 07:28:55





Test: A-134-l Run: A-134-l

Started on: 4/10/2014 at 07:28:55

A-221 Page 7 of 7

SOUTHWEST RESEARCH INSTITUTE® San Antonio, Texas

Fuels and Lubricants Research Division

Report on

CATERPILLAR TO-4 FRICTION PROPERTIES, VC-70 FRRET SEQUENCE ONLY

Conducted for

ARMY LAB

Oil Code: LO306520

Test Number: A-135-I

April 15, 2014

À

Brian Koehler Principal Engineer

Submitted by:

Specialty & Driveline Fluid Evaluation

R

The results of this report relate only to the fluid tested.

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute®.

CATERPILLAR TO-4 FRICTION PROPERTIES, VC-70 Summary Sheet

Company:	ARMY LAB						
Test start date: End of test date: Oil Code:	4/11/2014 4/15/2014 LO306520						
Sequence Number	1219	1220	1221	1222	1223	1224	Friction Retention
Dynamic Coefficient Vs. Cycle:							Р
Dynamic Coefficient Vs. Load:							
Dynamic Coefficient Vs. Speed:							
Energy Limit:							
Static Coefficient Vs. Load:							
Static Coefficient Vs. Speed:							
Energy Limit:							
Total Wear:							
Wear Limit:	0.030	0.040	0.070	0.070	0.070	0.040	
Comments: The results are compa	This testing wa		on a referer	nced test sta	nd using 200	9 batch part	S.
		45					

P = Pass

N/A = Not Applicable

Test name: A-135-I Test date: 4/11/2014

Test description:

Oil type: LO306520 Viscosity: SAE 30

Miscellaneous:

Software version: 3.12

Run name & desc: A-135-l Run date: 4/11/2014

Oil temperature: 82
Oil flow rate: 4

Operator: Remarks:

Sequence name: FRRET

Remarks:

Number of cylces run: 25100

Machine: 1131

Coast down check run:

Result:(sec)
Inertia check run:
Result(n·m·s²):

Disc name & desc: 1Y0709

Material: SINTERED BRONZE

Groove pattern: Miscellaneous:

 Outer diameter(mm):
 285.8008

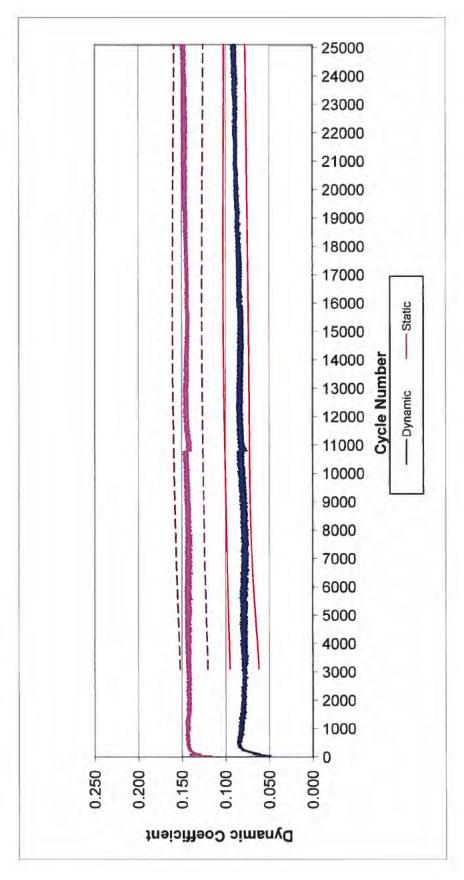
 Inner diameter(mm):
 223.19996

 Mean radius(mm):
 128.2100001

 Batch Number:
 007130C800012

Remarks:

Plate Name & desc: 1Y0726 Surface: 0.24


Miscellaneous:

Batch Number: 007130C800012

Remarks:

Report limit name: R-008-I Limit file generated: 9/14/2012

Report format name: REPFRRET - FRICTION RETENTION

Test: A-135-I Run: A-135-I Started on: 04/11/2014 at 07:30:01

APPENDIX B. Test Report, LO288074 MIL-PRF-2104H 15W40, DDC 6V53T High Temperature Evaluation

EVALUATION OF MIL-PRF-2104H AT HIGHT TEMPERATURE LO-288074

Project 14734.21

Detroit Diesel Corporation 6V53T

Test Lubricant: LO-288074

Test Fuel: JP8

Test Number: LO288074-6V53T1-T-240HT

Start of Test Date: July 19, 2013 End of Test Date: August 17, 2013

Test Duration: 240 Hours

Test Procedure: Tracked Vehicle Engine Cycle

Conducted for

U.S. Army TARDEC
Force Projection Technologies
Warren, Michigan

Introduction	3
Test Engine	3
Test Stand Configuration	3
Test Procedure	3
Test Cycle	5
Oil Sampling	5
Oil Level Checks	5
Engine Operating Conditions Summary	5
Engine Performance Curves	7
Engine Oil Analysis	8
Engine Oil Analysis Trends	9
Oil Consumption Data	. 11
Engine Measurements	
Pre-Test Cylinder Bore Measurements, inches	. 12
Post-Test Cylinder Bore Measurements, inches	. 13
Cylinder Bore Diameter Changes, inches	. 14
Pre-Test Liner Surface Finish, µm	
Piston Skirt to Bore Clearance, inches	
Connecting Rod Bearing Mass Change, grams	. 16
Slipper Bushing Mass Change, grams	
Pre-Test Slipper Bushing Tin Plate Thickness, inches	
Top, Second, and Third Ring Radial Measurements, inches	
Piston Ring Gap Measurements, inches	
Piston Ring Mass Measurements, inches	. 19
Oil Control & Expander Ring Tension, pounds	. 20
Post Test Engine Ratings	
Piston Ratings, Demerits	. 20
Ring Face Distress, Demerits	
EOT Cylinder Liner Ratings, % Area	
Periodic Bore Inspection Results, % Area	
Piston Skirt Ratings	
EOT Intake Port Plugging & Slipper Bushing Exposed Copper, %	
Photographs	23

Introduction

This test was used to determine the performance of MIL-PRF-2104H (LO-288074) at high temperatures when used in the Detroit Diesel Corporation (DDC) 6V53T engine, by the procedures outlined in the Tracked Vehicle Engine Cycle (CRC Report No.406, Development of Military Fuel/Lubricant/Engine Compatibility Test). This work was completed in support of Project 14734.21, Single Common Powertrain Lubricants for Combat/Tactical Equipment..

Test Engine

The oil was evaluated in the DDC 6V53T turbo-supercharged diesel engine representative of engines currently fielded in the M113 Armored Personnel Carrier (APC). Prior to testing, the engine was rebuilt using premeasured cylinder kits and rod bearings to provide a known starting condition for post test wear measurements. Engine clearances and specifications were verified, and the engine was assembled following standard assembly procedures.

Test Stand Configuration

The engine was mounted in a test stand specifically configured for DDC engine testing. Engine monitoring, control, and data acquisition was supplied by Southwest Research Institute (SwRI) developed PRISM software. An appropriately sized absorption dynamometer was used to supply engine loading. Engine oil and coolant temperatures were controlled with the use of liquid-to-liquid heat exchangers. Engine intake air was supplied at ambient conditions, and inlet fuel temperature was controlled through an auxiliary fuel heater loop.

Test Procedure

The procedure outline below is followed in sequential order for each lubricant test in the DDC 6V53T engine.

• Initial Oil Flush:

- -Engine is charged with fresh test oil and a new filter (not weighed).
- -Engine operated at 1200 rpm and 88 lb-ft load until engine and oil temperatures stabilize.
- -Engine shut down and oil charge drained to remove and solvent left from engine rebuild

• Engine Run In:

- -Engine is charged with fresh test oil and a new filter (weighed and recorded)
- -Engine is started and run-in following procedures outline below.
- -Immediately after run-in is complete, a no-load governor check is completed (2950-
- 3030rpm). If engine governed speed is out of spec, adjust and retest.

Table 1 - Test Engine Run-In Procedure

Engine Speed [RPM]	Load [lb-ft]	Power (Observed) [bhp]	Duration [min]
1000	None commanded		10
2800	None commanded		30
1800	88	30	15
2200	310	130	30
2500	420	200	30
2800	422	225	30

• Engine Shake Down:

- -Engine operated for 5hrs at 2800 rpm and 390 lb-ft load
- -After shakedown is complete, engine output is checked at max power and torque load points
- -Completed using run-in oil charge

• Pre Test Engine Powercurve:

- -Full load engine power is mapped over entire speed range in 200 rpm increments
- -Completed using run-in oil charge. Once complete, engine oil charge is drained and recorded.

• <u>Testing:</u>

- -Engine is charged with fresh test oil and a new filter (weighed and recorded)
- -Engine is operated on test for 240hrs. Test termination can be determined early due to severe piston/liner scuffing, or upon major oil degradation.
- -Oil samples collected daily for used oil analysis
- -Airbox inspections take place at 0, 60, 120, and 180 hours.

• Post Test Engine Powercurve:

- -Full load engine power is mapped over entire speed range in 200 rpm increments
- -Completed using test oil charge. Once complete, engine oil charge is drained and recorded.

Test Cycle

The test cycle followed during oil evaluation was the standard 240 hr Tracked Vehicle Engine Cycle as outlined in CRC Report No. 406, Development of Military Fuel/Lubricant/Engine Compatibility Test. Test termination would occur at the completion of 240 hrs. Early test termination could be called due to severe oil degradation, or upon experiencing major piston and liner scuffing during the test. The test cycle consists of cyclic modes alternating between idle, max power, and max torque load points. Total daily runtime consisted of 20hrs of operation followed by a 4hr engine off soak period. The cyclic mode consisted of the following modes repeated 4 times daily: 30 minutes at idle speed, 2 hours at max power, 30 minutes of idle speed, 2 hours at max torque. Multiple engine parameters were controlled throughout testing to ensure test consistency, and are specified below in Table 2.

Idle Parameter Max Power Max Torque Speed [rpm] 2800 +/- 25 1600 +/- 25 850 +/- 25 Water Jacket Out [°F] 170 +/- 5 170 + / - 5170 + / - 5Inlet Fuel [°F] 100 +/- 5 100 +/- 5 100 +/- 5 260 +/- 5 260 + / -5NS Oil Sump [°F]

Table 2 - Test Cycle Operating Parameters

Engine coolant was a 60/40 blend of ethylene glycol antifreeze and deionized water. Test fuel was JP8 sourced from a local fuel supplier. (Note: Oil sump specification of 260°F was for the Tracked Vehicle Cycle only. Engine run-in, shakedown, and powercurves were operated at nominally 220°F)

Oil Sampling

Four ounces of engine oil was sampled every 20 hrs for used oil analysis. Engine oil analysis consisted of the following tests outlined in Table 3. All oil samples were weighed and logged to take into account during calculations of total engine oil consumption for the test duration.

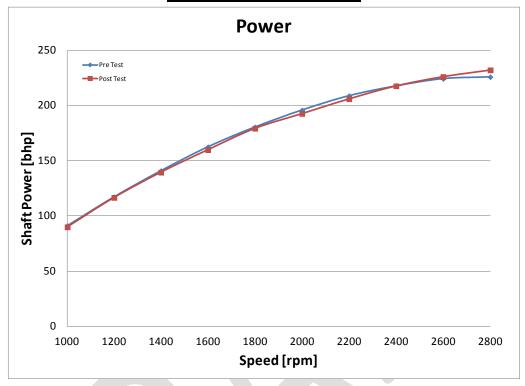
Daily Used	Oil Analysis
ASTM D445	Kinematic Viscosity @ 100°C
ASTM D5185	Wear Metals by ICP
ASTM D4739	Total Base Number
ASTM D664	Total Acid Number

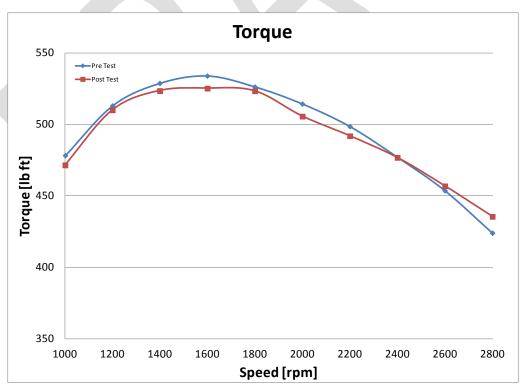
Table 3 - Used Oil Analysis Procedures

Used oil analysis results can be seen in the engine oil analysis section of the report.

Oil Level Checks

Engine oil level was checked daily and replenished as needed to restore oil level to full mark. This process occurred daily after the completion of the 4hr soak prior to restarting testing. All oil additions were weighed and logged to take into account during calculation of total engine oil consumption for the test duration.

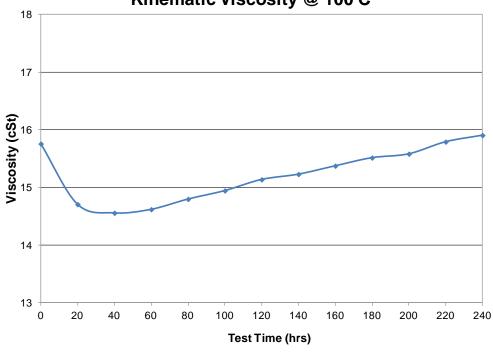

Engine Operating Conditions Summary


Below is a summary of the engine operating conditions over the test duration. The complete 240hr test schedule was completed by the lubricant. (Note: the engine operating summary was split into two segments, 0-100hrs and 100-240hrs, due to specific changes in the engines fuel system and overall power output observed during testing).

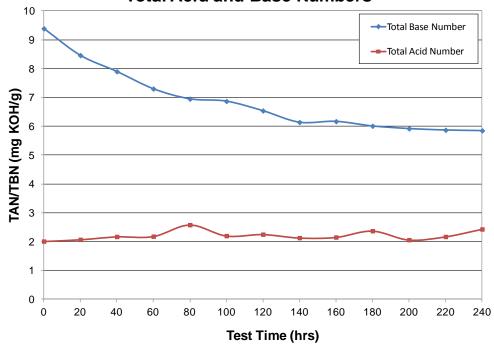
		(2800	Power (RPM) OOhrs	(2800	Power ORPM) -240hrs	(1600	Torque ORPM) OOhrs	(1600	Torque ORPM) -240hrs	(850	nditions RPM) 240hrs
Perameter:	Units:	Average	Std. Dev.	Average	Std. Dev.	Average	Std. Dev.	Average	Std. Dev.	Average	Std. Dev.
Engine Speed	RPM	2800.04	1.62	2800.02	0.87	1600.00	0.71	1600.02	0.66	854.89	20.65
Torque*	ft*lb	419.44	10.67	446.75	3.82	529.25	3.83	534.89	4.03	-	-
Fuel Flow	lb/hr	88.40	2.30	92.06	0.81	62.06	1.55	61.69	0.58	3.28	1.52
Power*	bhp	223.62	5.69	238.17	2.03	161.23	1.17	162.95	1.22	-	-
BSFC*	lb/bhp*hr	0.395	0.010	0.387	0.003	0.385	0.008	0.379	0.003	-	-
Engine Blowby	acfm	8.37	1.65	7.38	1.07	6.48	0.65	7.06	1.07	4.94	1.15
Temperatures:											
Coolant In	°F	161.56	0.72	161.16	0.69	158.99	0.73	158.70	0.69	163.90	8.12
Coolant Out	°F	170.00	0.64	170.00	0.52	169.98	0.64	169.99	0.56	166.53	8.47
Oil Galley	°F	234.88	10.86	234.35	12.23	247.32	6.51	247.08	8.20	210.52	21.27
Oil Sump	°F	259.99	1.53	260.02	1.31	260.04	0.99	260.00	1.29	211.98	21.46
Fuel In	°F	100.01	0.45	100.11	0.47	100.03	0.49	100.03	0.44	99.63	1.34
Dry Bulb	°F	94.46	6.28	95.75	6.07	93.05	6.84	94.06	6.88	92.46	6.45
Intake Air	°F	86.63	3.44	86.85	3.05	86.57	2.72	86.58	2.59	83.81	2.25
Air After Turbo	°F	260.31	3.47	271.55	5.34	192.81	2.70	195.75	3.25	91.80	3.50
Air After Supercharger	°F	261.33	4.23	269.59	4.75	198.20	2.06	202.36	3.37	154.12	16.35
Cylinder 1R Exhaust	°F	834.53	76.41	831.07	25.24	636.93	7.44	632.12	16.96	211.55	21.66
Cylinder 2R Exhaust	°F	829.60	5.47	846.33	29.19	730.90	5.99	724.92	7.57	183.19	17.57
Cylinder 3R Exhaust	°F	821.90	5.51	842.14	12.05	698.95	5.32	701.82	13.20	189.43	14.73
Cylinder 1L Exhaust	°F	829.30	8.43	875.04	21.90	667.96	7.14	712.42	18.70	205.91	15.11
Cylinder 2L Exhaust	°F	922.39	9.02	929.24	20.93	915.27	7.75	914.61	23.11	224.67	16.19
Cylinder 3L Exhaust	°F	858.28	18.18	911.23	17.05	842.62	20.21	863.29	19.54	204.04	17.54
Exhaust Exit Left	°F	892.77	9.97	925.46	15.36	875.00	8.94	883.96	17.99	215.19	16.71
Exhaust Exit Right	°F	867.85	6.04	830.60	14.35	796.77	5.46	734.31	15.33	185.92	15.54
Exhaust After Turbo	°F	708.21	7.20	722.67	18.07	717.74	8.37	716.48	17.73	219.33	24.84
Pressures:											
Oil Galley	psiG	45.58	0.93	45.93	0.92	27.25	0.58	27.71	0.67	17.40	4.11
Crankcase Pressure	inH20	0.21	0.04	0.28	0.04	0.06	0.03	0.07	0.02	0.02	0.03
Ambient Pressure	psiA	14.36	0.02	14.36	0.03	14.36	0.02	14.36	0.03	14.36	0.03
Pressure After Turbo	psiG	16.05	0.26	17.24	0.49	8.96	0.13	9.19	0.19	0.24	0.04
Pressure After Supercharger	psiG	17.66	0.29	18.82	0.36	8.27	0.15	8.51	0.17	0.36	0.09
Pressure Exhaust Left	psiG	15.36	0.23	16.40	0.27	7.67	0.11	7.87	0.14	0.13	0.06
Pressure Exhaust Right	psiG	14.47	0.21	15.49	0.26	7.22	0.09	7.44	0.12	0.13	0.04
Pressure Exhaust After Turbo	psiG	0.74	0.03	0.83	0.12	0.05	0.02	0.08	0.05	-0.02	0.00
Fuel Pressure	psiG	28.82	1.66	64.73	0.45	12.26	0.83	53.56	0.89	21.57	1.02

^{*} Non-corrected Values, ** Calculations exclude test hours 176.5 though 185.5 due to a malfunctinoing 1R injector

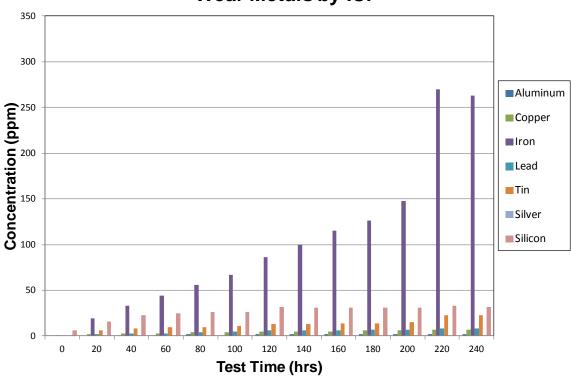
Engine Performance Curves



Engine Oil Analysis


	ASTM					T	est Hour	'S						
Property	Test	0	20	40	60	80	100	120	140	160	180	200	220	240
Viscosity @ 100°C (cSt)	D445	15.8	14.7	14.6	14.6	14.8	14.9	15.1	15.2	15.4	15.5	15.6	15.8	15.9
Total Base Number (mg KOH/g)	D4739	9.4	8.5	7.9	7.3	7.0	6.9	6.5	6.1	6.2	6.0	5.9	5.9	5.9
Total Acid Number (mg KOH/g)	D664	2.0	2.1	2.2	2.2	2.6	2.2	2.3	2.1	2.2	2.4	2.1	2.2	2.4
Wear Metals (ppm)	D5185													
Al		<1	<1	1	1	2	1	2	2	2	2	2	2	2
Sb		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ва		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
В		<1	<1	<1	<1	<1	1	<1	<1	<1	2	1	1	2
Ca		2391	2429	2483	2460	2555	2516	2512	2604	2543	2636	2666	2710	2620
Cr		<1	<1	2	2	2	3	3	3	4	4	4	6	6
Cu		<1	2	3	3	4	4	5	5	5	6	6	7	7
Fe		1	19	33	44	56	67	86	100	115	126	148	270	263
Pb		<1	2	3	3	4	5	6	6	6	7	7	8	8
Mg		294	303	313	316	322	319	321	327	320	329	333	337	324
Mn		<1	<1	<1	<1	<1	1	1	1	2	2	2	3	3
Mo		<1	2	3	4	4	5	6	7	8	9	10	18	17
Ni		<1	<1	<1	<1	<1	<1	<1	1	1	1	1	3	3
P		1330	1297	1287	1246	1221	1230	1228	1221	1202	1215	1202	1220	1213
Si		6	16	23	25	26	26	32	31	31	31	31	33	32
Ag		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Na		<5	5	6	6	6	6	9	10	14	10	10	9	9
Sn		<1	6	8	10	10	11	13	13	14	14	15	23	23
Zn		1418	1408	1415	1402	1423	1407	1419	1425	1423	1448	1457	1487	1460
K		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Sr		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
V		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Ti		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cd		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1

Engine Oil Analysis Trends


Kinematic Viscosity @ 100 C

Total Acid and Base Numbers

Wear Metals by ICP

Oil Consumption Data

Average oil consumption per test hour was 0.180 lbs/hr.

			Consumption	Consumption
	Additions (lbs)	Samples (lbs)	(lbs)	Accumulated
20 hr		0.17	-0.17	-0.17
40 hr	3.19	0.18	3.01	2.84
60 hr	3.43	0.18	3.25	6.09
80 hr	3.53	0.19	3.34	9.43
100 hr	4.32	0.19	4.13	13.56
120 hr	4.14	0.24	3.9	17.46
140 hr	3.13	0.2	2.93	20.39
160 hr	2.9	0.19	2.71	23.1
180 hr	3.19	0.19	3	26.1
200 hr	4.12	0.19	3.93	30.03
220 hr	3.1	0.19	2.91	32.94
240 hr	2.6	0.19	2.41	35.35
	Initial Fill	40.74	Total Additions	37.65
	EOT Drain	32.99	Total Samples	2.3

(Initial Fill + Additions)	78.39
(EOT Drain + Samples)	35.29
Total Oil Consumption	<i>I</i> /3 1

Engine Measurements

Pre-Test Cylinder Bore Measurements, inches

Cylinder	Depth	Thrust/Anti-Thrust	Front/Back	Avg Bore DIA	Out of Round
	13mm From Top	3.8770	3.8758		0.0012
	25mm Above Port	3.8767	3.8758	3.8763	0.0009
1L	25mm Below Port	3.8764	3.8758		0.0006
	13mm From Bottom	3.8762	3.8765		0.0003
	Taper	0.0008	0.0007		
	13mm From Top	3.8764	3.8762		0.0002
	25mm Above Port	3.8758	3.8757	3.8760	0.0001
2L	25mm Below Port	3.8758	3.8757		0.0001
	13mm From Bottom	3.8758	3.8764		0.0006
	Taper	0.0006	0.0007		
	13mm From Top	3.8760	3.8758		0.0002
	25mm Above Port	3.8757	3.8757	3.8758	0.0000
3L	25mm Below Port	3.8755	3.8756		0.0001
	13mm From Bottom	3.8757	3.8760		0.0003
	Taper	0.0005	0.0004		
	13mm From Top	3.8756	3.8764		0.0008
	25mm Above Port	3.8756	3.8761	3.8759	0.0005
1R	25mm Below Port	3.8756	3.8759		0.0003
	13mm From Bottom	3.8758	3.8759		0.0001
	Taper	0.0002	0.0005		
	13mm From Top	3.8768	3.8761		0.0007
	25mm Above Port	3.8762	3.8760	3.8762	0.0002
2R	25mm Below Port	3.8760	3.8760		0.0000
	13mm From Bottom	3.8761	3.8763		0.0002
	Taper	0.0008	0.0003		
	13mm From Top	3.8763	3.8760		0.0003
	25mm Above Port	3.8760	3.8758	3.8760	0.0002
3R	25mm Below Port	3.8757	3.8757		0.0000
	13mm From Bottom	3.8764	3.8759		0.0005
	Taper	0.0007	0.0003		

Post-Test Cylinder Bore Measurements, inches

Cylinder	Depth	Thrust/Anti-Thrust	Front/Back	Avg Bore DIA	Out of Round
	13mm From Top	3.8776	3.8764		0.0012
	25mm Above Port	3.8767	3.8762	3.8767	0.0005
1L	25mm Below Port	3.8770	3.8763		0.0007
	13mm From Bottom	3.8762	3.8772		0.0010
	Taper	0.0014	0.0010		
	13mm From Top	3.8771	3.8762		0.0009
	25mm Above Port	3.8761	3.8759	3.8764	0.0002
2L	25mm Below Port	3.8769	3.8761		0.0008
	13mm From Bottom	3.8757	3.8770		0.0013
	Taper	0.0014	0.0011		
	13mm From Top	3.8766	3.8763		0.0003
	25mm Above Port	3.8760	3.8759	3.8762	0.0001
3L	25mm Below Port	3.8760	3.8761		0.0001
	13mm From Bottom	3.8765	3.8759		0.0006
	Taper	0.0006	0.0004		
	13mm From Top	3.8760	3.8768		0.0008
	25mm Above Port	3.8760	3.8764	3.8763	0.0004
1R	25mm Below Port	3.8763	3.8763		0.0000
	13mm From Bottom	3.8762	3.8763		0.0001
	Taper	0.0003	0.0005		
	13mm From Top	2.8822	3.8772		0.0050
	25mm Above Port	2.8811	9.8782		110,0050
2R	25mm Below Port	3.8773	3.8768		0.0005
	13mm From Bottom	3.876	1 2 2 T 2		
	Taper	0.0059	(A)		
	13mm From Top	3.8772	3.8768		0.0004
	25mm Above Port	3.8768	3.8765	3.8769	0.0003
3R	25mm Below Port	3.8773	3.8766		0.0007
	13mm From Bottom	3.8763	3.8775		0.0012
	Taper	0.0010	0.0010		

Cylinder Bore Diameter Changes, inches

Cylinder	Depth	Thrust/Anti-Thrust	Front/Back	Avg Bore DIA Change	Out of Round
	13mm From Top	0.0006	st/Anti-Thrust Front/Back Avg Bore DIA Change Round		
	25mm Above Port	0.0000	0.0004	0.0004	0.0004
1L	25mm Below Port	0.0006	0.0005		0.0001
	13mm From Bottom	0.0000	0.0007		0.0007
1L 2L 3L 1R 2R 3R Avgerage All	Taper	0.0006	0.0003		
	13mm From Top	0.0007	0.0000		0.0007
	25mm Above Port	0.0003	0.0002	0.0004	0.0001
2L	25mm Below Port	0.0011	0.0004		0.0007
13mm From 25mm Abo 25mm Beld 13mm From Tape 13mm From 25mm Abo 25mm Beld 13mm From Tape 13mm From 25mm Abo 25mm Beld 13mm From Tape 13mm From 25mm Abo 25mm Beld 13mm From Tape 13mm From Tape 25mm Abo 25mm Beld 13mm From Tape 25mm Abo 25mm Abo 25mm Abo 3R 25mm Beld 13mm From Tape 13mm From Tape 25mm Abo 25mm Abo 3R 25mm Abo 3R 25mm Abo 3R 25mm Abo 3BM 25mm Abo	13mm From Bottom	0.0001	0.0006		0.0007
	Taper	0.0010	0.0006		
	13mm From Top	0.0006	0.0005		0.0001
	25mm Above Port	0.0003	0.0002	0.0004	0.0001
3L	25mm Below Port	0.0005	0.0005		0.0000
	13mm From Bottom	0.0008	0.0001		0.0003
	Taper	0.0005	0.0004		
	13mm From Top	0.0004	0.0004		0.0000
	25mm Above Port	0.0004	0.0003	0.0004	0.0001
1R	25mm Below Port	0.0007	0.0004		0.0003
	13mm From Bottom	0.0004	0.0004		0.0000
	Taper	0.0003	0.0001		
	13mm From Top	0.0054	0.0011		0.0043
	25mm Above Port	0.0049	0.0022	0.0021	10.00271
2R	25mm Below Port	0.0013	0.0008		1000000
	13mm From Bottom	0.0002	0.00%		0.0003
	Taper	0.0052	0.9014		
	13mm From Top	0.0009	0.0008		0.0001
	25mm Above Port	0.0008	0.0007	0.0009	0.0001
3R	25mm Below Port	0.0016	0.0009		0.0007
	13mm From Bottom		0.0016		0.0000 0.0003 0.0000 0.0004 0.0003 0.0000 0.0000 0.0000 0.00001 0.0001 0.0001 0.0001 0.0007
	Taper	0.0015	0.0009		
	13mm From Top	0.0006	0.0005		
Tape: 13mm Froi 25mm Abor 13mm Froi 13mm Froi 13mm Froi 13mm Froi 25mm Abor 25mm Belo 13mm Froi 25mm Belo 13mm Froi 13mm Froi 25mm Abor 25mm Belo 13mm Froi 25mm Abor 25mm Abor 3R	25mm Above Port	0.0004	0.0004		
Cylinders	25mm Below Port	0.0009	0.0005		0.0004 0.0007 0.0007 0.0007 0.0001 0.0007 0.0001 0.0001 0.0000 0.0003 0.0000 0.0003 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001
	13mm From Bottom	0.0003	0.0007		
-					-

Pre-Test Liner Surface Finish, µm

Pre Test Liner Surface Finish, µm					
1L	2L	3L	1R	2R	3R
1.11	1.11	1.17	1.04	1.08	1.09

Piston Skirt to Bore Clearance, inches

	Cylinder	Average Bore Diameter	Piston Skirt Diameter	Clearance
	1L	3.8763	3.8711	0.0052
Test	2L	3.8760	3.8709	0.0051
Te	3L	3.8758	3.8718	0.0040
Pre -	1R	3.8759	3.8709	0.0050
P	2R	3.8762	3.8718	0.0044
	3R	3.8760	3.8717	0.0043
	1L	3.8767	3.8705	0.0062
Test	2L	3.8764	3.8695	0.0069
<u> </u>	3L	3.8762	3.8696	0.0066
Post	1R	3.8763	3.8691	0.0072
Pc	2R	3.8783	3 3693	0.0090
	3R	3.8769	3.8694	0.0075

Connecting Rod Bearing Mass Change, grams

Rod Bearing	Shell	Before	After	Change
41	Тор	73.1788	73.1537	0.0251
1L	Bottom	68.6177	68.6134	0.0043
2L	Тор	73.0096	72.9887	0.0209
ZL	Bottom	69.3075	69.3039	0.0036
3L	Тор	73.2129	73.1957	0.0172
3L	Bottom	69.2610	69.2566	0.0044
1R	Тор	73.2830	73.2661	0.0169
IK	Bottom	68.6040	68.5989	0.0051
2D	Тор	73.3814	73.3665	0.0149
2R	Bottom	68.6161	68.6125	0.0036
3R	Тор	73.3375	73.3228	0.0147
JK	Bottom	68.6525	68.6482	0.0043

Maximum	0.0251
Average	0.0113

Slipper Bushing Mass Change, grams

Slipper Bushing	Before	After	Change
1L	56.2584	56.0955	0.1629
2L	56.2142	56.1318	0.0824
3L	56.2198	56.1094	0.1104
1R	56.0169	55.8921	0.1248
2R	56.0578	55.8956	0.1622
3R	55.8182	55.6772	0.1410

Maximum	0.1629
Average	0.1306

Pre-Test Slipper Bushing Tin Plate Thickness, inches

Slipper Bushing Tin Plate 1L 2L 3L 1R			in Plate Tl	nickness	
1L	2L	3L	1R	2R	3R
0.02135	0.02045	0.02095	0.02045	0.02030	0.02100

Top, Second, and Third Ring Radial Measurements, inches

		Top Ring		
Cylinder	Position	Before	After	Delta
	1	0.15485	0.15415	0.00070
	2	0.15475	0.15440	0.00035
1L	3	0.15495	0.15465	0.00030
	4	0.15415	0.15370	0.00045
	5	0.15520	0.15425	0.00095
	1	0.15655	0.15590	0.00065
	2	0.15650	0.15640	0.00010
2L	3	0.15570	0.15555	0.00015
	4	0.15550	0.15545	0.00005
	5	0.15580	0.15525	0.00055
3L	1	0.15875	0.15815	0.00060
	2	0.15965	0.15955	0.00010
	3	0.15920	0.15920	0.00000
	4	0.15780	0.15770	0.00010 0.00060
	5	0.15880	0.15820	0.00060
	1	0.15675	0.15600	0.00075
	2	0.15610	0.15570	0.00040
1R	2 0.15610 0.15570	0.15740	0.00025	
	4	0.15800	0.15780	0.00020
	5	0.15770	0.15660	0.00110
	1	0.15335	(0.184985)	
	2	0.15500		10.00.90
2R	3	0.15665		
	4	0.15585		10000176
	5	0.15375	0.14940	(0.000435)
	1	0.15405	0.15335	0.00070
3R	2	0.15510	0.15455	0.00055
	3	0.15460	0.15435	0.00025
	4	0.15500	0.15500	0.00000
	5	0.15295	0.15210	0.00085
*Note - Mea	surements	with a negi	tive delta va	lue, shown

*Note - Measurements with a negitive delta value, shown in italics, are considered pre-test measurements error

	S	econd Rin	g	
Cylinder	Position	Before	After	Delta
	1	0.14830	0.14580	0.00250
	2	0.14790	0.14676	0.00114
1L	3	0.14690	0.14620	0.00070
	4	0.14655	0.14590	0.00065
	5	0.14770	0.14635	0.00135
	1	0.14755	0.14685	0.00070
2L	2	0.14760	0.14720	0.00040
	3	0.14615	0.14545	0.00070
	4	0.14540	0.14475	0.00065
	5	0.14720	0.14635	0.00085
3L	1	0.14655	0.14570	0.00085
	2	0.14780	0.14700	0.00080
	3	0.14715	0.14645	0.00070
	4	0.14755	0.14690	0.00065
	5	0.14690	0.14620	0.00070
	1	0.14820	0.14735	0.00085
	2	0.14670	0.14625	0.00045
1R	3	0.14810	0.14735	0.00075
	4	0.14885	0.14815	0.00070
	5	0.14850	0.14775	0.00075
	1	0.14650		
	2	0.14635	NO NAO 701	100000000000000000000000000000000000000
2R	3	0.14525	(0.000)	
	4	0.14755		
	5	0.14755	0.14415	0.06346
	1	0.14910	0.14830	0.00080
	2	0.14865	0.14800	0.00065
3R	3	0.14730	0.14655	0.00075
	4	0.14815	0.14740	0.00075
	5	0.14835	0.14755	0.00080
*Note - Mea	surements	with a negi	tive delta va	lue, shown

*Note - Measurements with a negitive delta value, shown in italics, are considered pre-test measurements error

		Third Ring	l	
Cylinder	Position	Before	After	Delta
	1	0.14770	0.14680	0.00090
	2	0.14760	0.14590	0.00170
1L	3	0.14700	0.14660	0.00040
	4	0.14920	0.14865	0.00055
	5	0.14815	0.14725	0.00090
	1	0.14750	0.14725	0.00025
	2	0.14770	0.14740	0.00030
2L	3	0.14645	0.14610	0.00035
	4	0.14535	0.14490	0.00045
	5	0.14710	0.14660	0.00050
	1	0.14750	0.14710	0.00040
	2	0.14725	0.14690	0.00035
3L	3	0.14725	0.14690	0.00035
	4	0.14690	0.14650	0.00040
	5	0.14690	0.14630	0.00060
	1	0.14825	0.14775	0.00050
	2	0.14845	0.14805	0.00040
1R	3	0.14835	0.14800	0.00035
	4	0.14765	0.14715	0.00050
	5	0.14820	0.14765	0.00055
	1	0.14630		
	2	0.14605		
2R	3	0.14515		
	4	0.14750		100000000000000000000000000000000000000
	5	0.14715		1642002451
	1	0.14785	0.14725	0.00060
	2	0.14870	0.14825	0.00045
3R	3	0.14935	0.14885	0.00050
	4	0.14750	0.14695	0.00055
	5	0.14710	0.14670	0.00040
*Note - Mes	euromonte	with a negi	tive delta va	lue shown

*Note - Measurements with a negitive delta value, shown in italics, are considered pre-test measurements error

Maximum 0.00110	Maximum
Average 0.00043	Average

Maximum 0.00170 Average 0.00053

Piston Ring Gap Measurements, inches

Cylinder	Ring No.	Before	After	Increase
	1	0.029	0.031	0.002
	2	0.031	0.036	0.005
1L	3	0.030	0.034	0.004
1 -	4	0.016	0.024	0.008
	5a	0.016	0.020	0.004
	5b	0.015	0.017	0.002
	1	0.030	0.034	0.004
	2	0.030	0.033	0.003
2L	3	0.029	0.031	0.002
ZL	4	0.019	0.025	0.006
	5a	0.015	0.019	0.004
	5b	0.015	0.019	0.004
	1	0.030	0.032	0.002
	2	0.031	0.034	0.003
3L	3	0.031	0.033	0.002
	4	0.015	0.021	0.006
	5a	0.016	0.019	0.003
	5b	0.016	0.019	0.003
	1	0.030	0.032	0.002
	2	0.030	0.033	0.003
1R	3	0.030	0.031	0.001
IIV	4	0.015	0.020	0.005
	5a	0.015	0.018	0.003
	5b	0.016	0.019	0.003
	1	0.032	0.043	
	2	0.031	10.062	
2R	3	0.032	0.048	0.016
ZIX	4	0.016	0.021	0.005
	5a	0.015	0.020	0.005
	5b	0.015		
	1	0.038	0.039	0.001
	2	0.030	0.033	0.003
3R	3	0.030	0.032	0.002
31	4	0.015	0.021	0.006
	5a	0.015	0.019	0.004
	5b	0.015	0.019	0.004

Ring No. 1 max increase	0.004
Ring No. 2 max increase	0.005
Ring No. 3 max increase	0.004
Ring No. 4 max increase	0.008
Ring No. 5a max increase	0.004
Ring No. 5b max increase	0.004

Ring No. 1 avg increase	0.002
Ring No. 2 avg increase	0.003
Ring No. 3 avg increase	0.002
Ring No. 4 avg increase	0.006
Ring No. 5a avg increase	0.004
Ring No. 5b avg increase	0.003

Piston Ring Mass Measurements, inches

Cylinder	Ring No.	Before	After	Delta
	1	22.8309	22.8131	0.0178
4.	2	20.1595	20.0624	0.0971
1L	3	20.2289	20.1691	0.0598
	4	27.8405 27.8229		0.0176
	5	24.4568	24.4316	0.0252
	1	23.0771	23.0698	0.0073
	2	20.0362	20.0023	0.0339
2L	3	20.0377	20.0258	0.0119
	4	27.7761	27.7589	0.0172
	5	24.2955	24.2698	0.0257
	1	23.3764	23.3715	0.0049
	2	20.1341	20.0915	0.0426
3L	3	20.1234	20.1094	0.0140
	4	27.7136	27.6974	0.0162
	5	23.8705	23.8511	0.0194
	1	23.2091	23.1894	0.0197
	2	20.2566	20.2088	0.0478
1R	3	20.2776	20.2575	0.0201
	4	27.7519	27.7349	0.0170
	5	24.2084	24.1864	0.0220
	1	22.9773	22.8662	
	2	19.9967	19.2233	
2R	3	19.9687	19.6156	0.3531
	4	27.6805		
	5	24.0866	(124) (A99)	1173836311
	1	23.0134	23.0091	0.0043
	2	20.2398	20.1968	0.0430
3R	3	20.2546	20.2354	0.0192
	4	27.8999	27.8729	0.0270
	5	24.2062	24.1721	0.0341

Ring No. 1 max decrease	0.0197
Ring No. 2 max decrease	0.0971
Ring No. 3 max decrease	0.0598
Ring No. 4 max decrease	0.0270
Ring No. 5 max decrease	0.0341

Ring No. 1 avg decrease	0.0108
Ring No. 2 avg decrease	0.0529
Ring No. 3 avg decrease	0.0250
Ring No. 4 avg decrease	0.0190
Ring No. 5 avg decrease	0.0253

Oil Control & Expander Ring Tension, pounds

	Oil Control & Expander Ring Tension						
	1L 2L 3L 1R 2R 3R						
Top Oil Ring	10.1	10.7	12.1	10	10.8	10.8	
Second Oil Ring							

NOTE – To be used as reference only. Measurements taken with uncalibrated legacy equipment.

Post Test Engine Ratings

Piston Ratings, Demerits

Potingo	Cylinder Number						
Ratings	1L	2L	3L	1R	2R	3R	Avg
Ring Sticking (F=Free, CS=C	old Stuck, HS=H	lot Stuck, CP=Co	ollapsed Ring, No	o. Denotes % O	f Ring Circumfe	rence)	
Тор	F (25%CP)	F (25%CP)	F (25%CP)	F (25%CP)	F (50%CP)	F (25%CP)	
Second	F	F	F	F	F (5%CP)	F	
Third	F	F	F	F	F	F	
Oil Control Rings	F	F	F	F	F	F	
2nd Ring Carbon		-		-	-		
Heavy Carbon	0	85	20	75	0	49	
Light Carbon	5	15	80	25	70	51	
Piston Carbon, Demerits							
No.1 Groove	59.50	58.50	66.75	59.25	41.75	62.00	57.96
No.2 Groove	34.00	38.50	28.00	45.25	36.25	38.50	36.75
No.3 Groove	24.50	24.75	23.75	25.00	25.00	24.75	24.63
No.1 Land	34.75	40.75	37.75	51.25	30.25	39.25	39.00
No.2 Land	67.00	57.50	54.25	44.00	57.25	54.25	55.71
No.3 Land	16.25	27.50	27.25	23.25	34.00	21.25	24.92
No.4 Land	14.50	12.25	10.50	10.00	22.50	8.00	12.96
Piston Lacquer, Demerits							
No.1 Groove	0.00	0.00	0.00	0.00	0.00	0.00	0.00
No.2 Groove	0.00	0.00	0.00	0.00	0.00	0.00	0.00
No.3 Groove	0.00	0.03	0.00	0.00	0.00	0.00	0.01
No.1 Land	0.00	0.00	0.00	0.00	0.00	0.00	0.00
No.2 Land	0.00	0.15	0.00	0.10	0.00	0.00	0.04
No.3 Land	0.66	0.55	1.05	1.11	0.00	0.63	0.67
No.4 Land	0.00	1.79	1.91	2.83	0.29	2.31	1.52
Total, Demerits	251.16	262.27	251.21	262.04	247.29	250.94	254.15
Miscellanous							
Top Groove Fill, %	69	62	80	57	38	60	61.00
Intermediate Groove Fill, %	57	46	65	66	57	51	57.00
Top Land Heavy Carbon, %	13	21	17	35	7	19	18.67
Top Land Flaked Carbon, %	0	0	0	0	0	0	0.00

Ring Face Distress, Demerits

Cylinder No.	Ring No.	Extreme Distress (1.00) % Area	Heavy Distress (0.75) % Area	Medium Distress (0.50) % Area	Light Distress (0.25) % Area	No Distress (0.00) % Area	Total Demerits
	1		9	8	39	44	0.205
1L	2					100	0
	3					100	0
	1			2	39	59	0.1075
2L	2				3	97	0.0075
	3					100	0
	1		2	4	11	83	0.0625
3L	2					100	0
	3					100	0
	1		8		13	79	0.0925
1R	2					100	0
	3					100	0
	1						
2R	2						
	3						
	1		5		15	80	0.075
3R	2					100	0
	3					100	0

Piston Ring Face	Fire	2nd	3rd
Distress	Ring	Ring	Ring
Average Demerits	0.1085	0.0015	0.0000

EOT Cylinder Liner Ratings, % Area

	Cylinder Liner Ratings							
	% Sci	uffing	Total % Area	% Pc	olish	Total % Area		
	Т	AT	Scuffed	T	AT	Polished		
1L	0	1	1	0	8	8		
2L	0	0	0	0	4	4		
3L	0	0	0	2	2	4		
1R	0	2	2	0	3	3		
2R	45	45	90	3	4	7		
3R	0	1	1	2	0	2		
		Per	cent of total ring	travel area				

Periodic Bore Inspection Results, % Area

Periodic Bore Inspection, % Scuffed Area							
Cyl	0hr 60hr 120hr 180h						
1L	0	0	0	0			
2L	0	0	0	0			
3L	0	0	0	0			
1R	0	0	0	0			
2R	0	0	7	10			
3R	0	0	0	0			

Piston Skirt Ratings

	Piston Skirt Ratings	
	Thrust	Anti-Thrust
1L	Very Light Scratches	Few Light Scratches
2L	Light Scratches	Very Light Scratches
3L	Very Light to Trace Scratches	Trace to Light Scratches
1R	Very Light Scratches	Very Light Scratches
2R	Very Light Scratches	Light Scratches & 15% Scuffing
3R	Very Light Scratches	Very Light Scratches

EOT Intake Port Plugging & Slipper Bushing Exposed Copper, %

Intake Port Plugging		
1L	2	
2L	0	
3L	1	
1R	1	
2R	3	
3R	0	
Average	1.1666667	

Slipper Bushing		
% Exposed Copper		
1L	8	
2L	5	
3L	4	
1R	6	
2R	6	
3R	3	
Average	5.33	

Photographs

Oil Code:	LO288074	EOT Date:	8/17/13	
Test No.:	LO288074-6V53T1-T-240HT	Test Length:	240	

Ring Pack 1 Left

Ring Pack 1 Right

Oil Code:	LO288074	EOT Date:	8/17/13	
Test No.:	LO288074-6V53T1-T-240HT	Test Length:	240	

Piston 1 Left Thrust

Piston 1 Left Anti-thrust

Oil Code:	LO288074	EOT Date:	8/17/13	
Test No.:	LO288074-6V53T1-T-240HT	Test Length:	240	

Piston 1 Right Thrust

Piston 1 Right Anti-thrust

Oil Code:	LO288074	EOT Date: 8/17/13
Test No.:	LO288074-6V53T1-T-240HT	Test Length: 240

Liner 1 Left Thrust and Anti-thrust

Oil Code:	LO288074	EOT Date: 8/17/13
Test No.:	LO288074-6V53T1-T-240HT	Test Length: 240

Liner 1 Right Thrust and Anti-thrust

Oil Code:	LO288074	EOT Date: 8/17/13	
Test No.:	LO288074-6V53T1-T-240HT	Test Length: 240	

Ring Pack 2 Left

Ring Pack 2 Right

Oil Code:	LO288074	EOT Date:	8/17/13	
Test No.:	LO288074-6V53T1-T-240HT	Test Length:	240	

Piston 2 Left Thrust

Piston 2 Left Anti-thrust

Oil Code:	LO288074	EOT Date:	8/17/13
Test No.:	LO288074-6V53T1-T-240HT	Test Length:	240

Piston 2 Right Thrust

Piston 2 Right Anti-thrust

Oil Code:	LO288074	EOT Date:	8/17/13	
Test No.:	LO288074-6V53T1-T-240HT	Test Length:	240	

Liner 2 Left Thrust and Anti-thrust

Oil Code:	LO288074	EOT Date:	8/17/13
Test No.:	LO288074-6V53T1-T-240HT	Test Length:	240

Liner 2 Right Thrust and Anti-thrust

Oil Code:	LO288074	EOT Date:	8/17/13
Test No.:	LO288074-6V53T1-T-240HT	Test Length:	240

Ring Pack 3 Left

Ring Pack 3 Right

Oil Code:	LO288074	EOT Date:	8/17/13	
Test No.:	LO288074-6V53T1-T-240HT	Test Length:	240	

Piston 3 Left Thrust

Piston 3 Left Anti-thrust

Oil Code:	LO288074	EOT Date:	8/17/13	
Test No.:	LO288074-6V53T1-T-240HT	Test Length:	240	

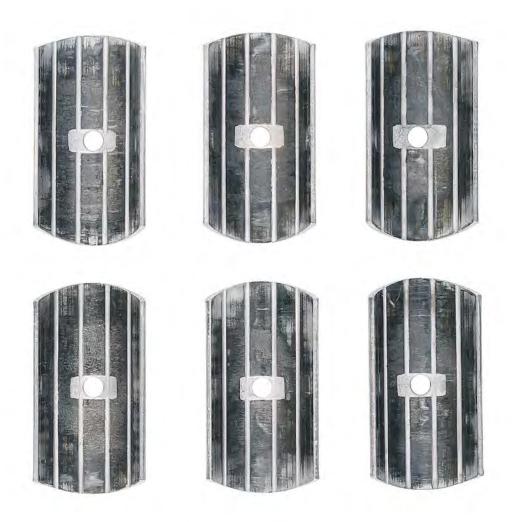
Piston 3 Right Thrust

Piston 3 Right Anti-thrust

Oil Code:	LO288074	EOT Date: 8/17/13
Test No.:	LO288074-6V53T1-T-240HT	Test Length: 240

Liner 3 Left Thrust and Anti-thrust

Oil Code:	LO288074	EOT Date:	8/17/13	
Test No.:	LO288074-6V53T1-T-240HT	Test Length:	240	


Liner 3 Right Thrust and Anti-thrust

Oil Code:	LO288074	EOT Date:	8/17/13	
Test No.:	LO288074-6V53T1-T-240HT	Test Length:	240	

Slipper Bushings 1R, 2R, 3R

Slipper Bushings 1L, 2L, 3L

Oil Code:	LO288074	EOT Date:	8/17/13
Test No.:	LO288074-6V53T1-T-240HT	Test Length:	240

Connecting Rod Bearings

Upper 1L, 2L, 3L, 1R, 2R, 3R

Lower 1L, 2L, 3L, 1R, 2R, 3R

APPENDIX C. Test Report, LO274845 (LO292039) Revised SCPL, DDC 6V53T High Temperature Evaluation

EVALUATION OF SCPL AT HIGHT TEMPERATURE LO-274845 (LO-292039)

Project 14734.21

Detroit Diesel Corporation 6V53T

Test Lubricant: LO-274845 (LO-292039)

Test Fuel: JP8

Test Number: LO274845-6V53T1-T-240HT Start of Test Date: September 11, 2013 End of Test Date: October 31, 2013

Test Duration: 200 Hours

Test Procedure: Tracked Vehicle Engine Cycle

Conducted for

U.S. Army TARDEC
Force Projection Technologies
Warren, Michigan

Introduction	3
Test Engine	3
Test Stand Configuration	3
Test Procedure	3
Test Cycle	5
Oil Sampling	5
Oil Level Checks	5
Engine Operating Conditions Summary	
Engine Performance Curves	7
Engine Oil Analysis	
Engine Oil Analysis Trends	9
Engine Measurements	10
Pre-Test Cylinder Bore Measurements, inches	10
Post-Test Cylinder Bore Measurements, inches	11
Cylinder Bore Diameter Changes, inches	12
Pre-Test Liner Surface Finish, µm	13
Piston Skirt to Bore Clearance, inches	13
Connecting Rod Bearing Mass Change, grams	14
Slipper Bushing Mass Change, grams	
Pre-Test Slipper Bushing Tin Plate Thickness, inches	14
Top, Second, and Third Ring Radial Measurements, inches	
Piston Ring Gap Measurements, inches	
Piston Ring Mass Measurements, inches	18
Oil Control & Expander Ring Tension, pounds	19
Post Test Engine Ratings	19
Piston Ratings, Demerits	19
Ring Face Distress, Demerits	20
EOT Cylinder Liner Ratings, % Area	
Piston Skirt Ratings	21
EOT Intake Port Plugging & Slipper Bushing Exposed Copper, %	21
Photographs	22

Introduction

This test was used to determine the performance of LO-274845 (LO-292039) at high temperatures when used in the Detroit Diesel Corporation (DDC) 6V53T engine, by the procedures outlined in the Tracked Vehicle Engine Cycle (CRC Report No.406, Development of Military Fuel/Lubricant/Engine Compatibility Test). This work was completed in support of Project 14734.21, Single Common Powertrain Lubricants for Combat/Tactical Equipment..

Test Engine

The oil was evaluated in the DDC 6V53T turbo-supercharged diesel engine representative of engines currently fielded in the M113 Armored Personnel Carrier (APC). Prior to testing, the engine was rebuilt using premeasured cylinder kits and rod bearings to provide a known starting condition for post test wear measurements. Engine clearances and specifications were verified, and the engine was assembled following standard assembly procedures.

Test Stand Configuration

The engine was mounted in a test stand specifically configured for DDC engine testing. Engine monitoring, control, and data acquisition was supplied by Southwest Research Institute (SwRI) developed PRISM software. An appropriately sized absorption dynamometer was used to supply engine loading. Engine oil and coolant temperatures were controlled with the use of liquid-to-liquid heat exchangers. Engine intake air was supplied at ambient conditions, and inlet fuel temperature was controlled through an auxiliary fuel heater loop.

Test Procedure

The procedure outline below is followed in sequential order for each lubricant test in the DDC 6V53T engine.

• Initial Oil Flush:

- -Engine is charged with fresh test oil and a new filter (not weighed).
- -Engine operated at 1200 rpm and 88 lb-ft load until engine and oil temperatures stabilize.
- -Engine shut down and oil charge drained to remove and solvent left from engine rebuild

• Engine Run In:

- -Engine is charged with fresh test oil and a new filter (weighed and recorded)
- -Engine is started and run-in following procedures outline below.
- -Immediately after run-in is complete, a no-load governor check is completed (2950-
- 3030rpm). If engine governed speed is out of spec, adjust and retest.

Table 1 - Test Engine Run-In Procedure

Engine Speed [RPM]	Load [lb-ft]	Power (Observed) [bhp]	Duration [min]
1000	None commanded		10
2800	None commanded		30
1800	88	30	15
2200	310	130	30
2500	420	200	30
2800	422	225	30

• Engine Shake Down:

- -Engine operated for 5hrs at 2800 rpm and 390 lb-ft load
- -After shakedown is complete, engine output is checked at max power and torque load points
- -Completed using run-in oil charge

• Pre Test Engine Powercurve:

- -Full load engine power is mapped over entire speed range in 200 rpm increments
- -Completed using run-in oil charge. Once complete, engine oil charge is drained and recorded.

• <u>Testing:</u>

- -Engine is charged with fresh test oil and a new filter (weighed and recorded)
- -Engine is operated on test for 240hrs. Test termination can be determined early due to severe piston/liner scuffing, or upon major oil degradation.
- -Oil samples collected daily for used oil analysis
- -Airbox inspections take place at 0, 60, 120, and 180 hours.

• Post Test Engine Powercurve:

- -Full load engine power is mapped over entire speed range in 200 rpm increments
- -Completed using test oil charge. Once complete, engine oil charge is drained and recorded.

Test Cycle

The test cycle followed during oil evaluation was the standard 240 hr Tracked Vehicle Engine Cycle as outlined in CRC Report No. 406, Development of Military Fuel/Lubricant/Engine Compatibility Test. Test termination would occur at the completion of 240 hrs. Early test termination could be called due to severe oil degradation, or upon experiencing major piston and liner scuffing during the test. The test cycle consists of cyclic modes alternating between idle, max power, and max torque load points. Total daily runtime consisted of 20hrs of operation followed by a 4hr engine off soak period. The cyclic mode consisted of the following modes repeated 4 times daily: 30 minutes at idle speed, 2 hours at max power, 30 minutes of idle speed, 2 hours at max torque. Multiple engine parameters were controlled throughout testing to ensure test consistency, and are specified below in Table 2.

Idle Parameter Max Power Max Torque Speed [rpm] 2800 +/- 25 1600 +/- 25 850 +/- 25 Water Jacket Out [°F] 170 +/- 5 170 + / - 5170 +/- 5 Inlet Fuel [°F] 100 +/- 5 100 +/- 5 100 +/- 5 Oil Sump [°F] 260 +/- 5 260 + / - 5NS

Table 2 - Test Cycle Operating Parameters

Engine coolant was a 60/40 blend of ethylene glycol antifreeze and deionized water. Test fuel was JP8 sourced from a local fuel supplier. (Note: Oil sump specification of 260°F was for the Tracked Vehicle Cycle only. Engine run-in, shakedown, and powercurves were operated at nominally 220°F)

Oil Sampling

Four ounces of engine oil was sampled every 20 hrs for used oil analysis. Engine oil analysis consisted of the following tests outlined in Table 3. All oil samples were weighed and logged to take into account during calculations of total engine oil consumption for the test duration.

Daily Used Oil Analysis

ASTM D445 Kinematic Viscosity @ 100°C

ASTM D5185 Wear Metals by ICP

ASTM D4739 Total Base Number

ASTM D664 Total Acid Number

Table 3 - Used Oil Analysis Procedures

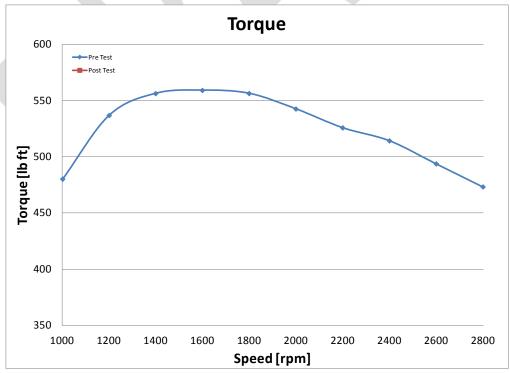
Used oil analysis results can be seen in the engine oil analysis section of the report.

Oil Level Checks

Engine oil level was checked daily and replenished as needed to restore oil level to full mark. This process occurred daily after the completion of the 4hr soak prior to restarting testing. All oil additions were weighed and logged to take into account during calculation of total engine oil consumption for the test duration.

Engine Operating Conditions Summary

Below is a summary of the engine operating conditions over the test duration. The complete 240hr test schedule was not completed by the lubricant due to excessive liner scuffing.

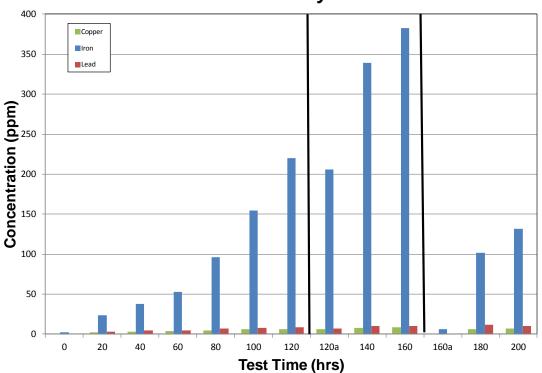

		(2800	Power ORPM) 60hrs	(1600	Torque ORPM) 50hrs	(850	nditions RPM) 50hrs
Perameter:	Units:	Average	Std. Dev.	Average	Std. Dev.	Average	Std. Dev.
Engine Speed	RPM	2799.98	1.00	1600.01	0.67	875.66	87.75
Torque*	ft*lb	450.15	17.88	529.14	17.51	3.70	12.77
Fuel Flow	lb/hr	89.97	3.01	60.41	1.92	3.57	1.24
Power*	bhp	239.98	9.53	161.20	5.33	0.75	2.93
BSFC*	lb/bhp*hr	0.375	0.005	0.375	0.004	-	-
Engine Blowby	acfm	7.82	1.76	6.86	0.61	5.36	0.98
Temperatures:							
Coolant In	°F	161.10	1.14	158.82	1.06	165.57	5.25
Coolant Out	°F	169.99	0.85	170.00	0.83	168.34	5.66
Oil Galley	°F	238.82	8.57	247.42	4.96	212.68	21.37
Oil Sump	°F	260.25	1.23	259.96	0.68	214.65	21.66
Fuel In	°F	100.08	0.59	100.02	0.55	99.72	1.15
Dry Bulb	°F	88.51	5.84	87.62	6.34	86.19	6.12
Intake Air	°F	84.52	3.22	84.49	2.83	83.29	2.34
Air After Turbo	°F	269.09	8.91	194.00	5.71	92.14	3.50
Air After Supercharger	°F	255.61	27.82	196.24	15.00	151.98	19.16
Cylinder 1R Exhaust	°F	848.92	24.54	620.39	17.30	193.28	37.38
Cylinder 2R Exhaust	°F	885.95	13.32	752.67	8.54	186.04	20.79
Cylinder 3R Exhaust	°F	803.68	34.65	678.65	21.93	178.16	21.87
Cylinder 1L Exhaust	°F	843.24	19.90	690.68	15.02	261.46	43.64
Cylinder 2L Exhaust	°F	933.85	16.13	906.73	14.18	233.34	31.11
Cylinder 3L Exhaust	°F	900.59	26.17	857.07	16.70	236.01	49.92
Exhaust Exit Left	°F	917.04	17.26	879.73	15.08	247.35	45.55
Exhaust Exit Right	°F	818.63	22.12	714.79	17.97	180.43	20.65
Exhaust After Turbo	°F	713.45	17.89	704.82	12.39	231.43	32.78
Pressures:							
Oil Galley	psiG	34.60	0.91	20.03	0.36	12.06	2.54
Crankcase Pressure	inH20	0.28	0.06	0.06	0.02	0.02	0.02
Ambient Pressure	psiA	14.34	0.04	14.13	0.07	14.34	0.04
Pressure After Turbo	psiG	16.97	0.89	9.18	0.49	0.13	0.72
Pressure After Supercharger	psiG	18.53	0.86	8.57	0.44	0.47	0.26
Pressure Exhaust Left	psiG	15.80	0.91	7.75	0.38	0.19	0.18
Pressure Exhaust Right	psiG	15.38	0.75	7.54	0.49	0.17	0.16
Pressure Exhaust After Turbo	psiG	0.71	0.11	0.06	0.06	-0.02	0.00
Fuel Pressure	psiG	64.74	0.66	54.66	1.26	22.37	4.28

^{*} Non-corrected Values

Engine Performance Curves

Note – Post test powercurves not conducted due to engine liner condition at EOT.

Engine Oil Analysis


Note – Liner 2R changed at 120hrs, but oil charge reused. Oil changed from LO274845 to LO292039 at 160hrs with 1R, 2R, & 3R liner changes.

	ASTM						1	est Hour	's							
Property	Test	0	20	40	60	80	100	120	120a	140	160	160a	180	200	220	240
Viscosity @ 100°C (cSt)	D445	8.6	8.7	8.9	9.1	9.2	9.3	9.4	9.2	9.8	10.0	8.5	8.6	8.9		
Total Base Number (mg KOH/g)	D4739	9.9	8.8	8.4	8.0	7.7	7.2	7.7	7.7	7.3	7.0	10.1	8.8	8.2		
Total Acid Number (mg KOH/g)	D664	1.9	1.9	2.0	2.1	2.2	2.2	2.3	2.1	2.4	2.4	2.0	2.2	2.2		
Wear Metals (ppm)	D5185															
Al		<1	1	1	2	2	2	2	3	3	4	1	2	2		
Sb		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1		
Ba		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1		
В		18	16	16	17	15	14	14	15	13	14	17	16	16		
Ca		924	994	1024	1019	1052	1051	1033	1057	1092	1130	912	957	976		
Cr		<1	<1	2	2	3	4	6	5	8	9	<1	2	3		
Cu		<1	2	3	4	5	6	6	6	8	9	<1	6	7		
Fe		2	24	38	53	96	155	220	206	339	383	6	102	132		
Pb		<1	3	5	5	7	8	9	7	10	10	1	12	10		
Mg		1375	1441	1462	1494	1519	1537	1554	1579	1638	1667	1369	1452	1462		
Mn		<1	<1	<1	<1	1	2	2	2	4	4	<1	1	2		
Mo		66	71	73	76	79	84	88	87	97	100	66	76	79		
Ni		<1	<1	<1	<1	1	2	2	2	4	4	<1	1	<1		
P		1171	1167	1153	1136	1129	1136	1140	1184	1183	1181	1132	1127	1091		
Si		6	19	24	37	38	39	39	35	47	47	6	30	36		
Ag		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1		
Na		<5	7	10	9	9	11	10	14	14	13	6	8	13		
Sn		<1	16	21	22	23	27	30	26	44	44	<1	28	29		
Zn		1279	1310	1305	1319	1333	1359	1358	1399	1431	1451	1256	1283	1309		
K		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5		
Sr		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1		
V		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1		
Ti		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1		
Cd		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1		

Engine Oil Analysis Trends

Note – Liner 2R changed at 120hrs, but oil charge reused. Oil changed from LO274845 to LO292039 at 160hrs with 1R, 2R, & 3R liner changes.

Wear Metals by ICP

Engine Measurements

Pre-Test Cylinder Bore Measurements, inches

			<u> </u>		
Cylinder	Depth	Thrust/Anti-Thrust	Front/Back	Avg Bore DIA	Out of Round
	13mm From Top	3.8757	3.8764		0.0007
	25mm Above Port	3.8763	3.8766	3.8764	0.0003
1L	25mm Below Port	3.8763	3.8765		0.0002
	13mm From Bottom	3.8764	3.8768		0.0004
	Taper	0.0007	0.0004		
	13mm From Top	3.8766	3.8763		0.0003
	25mm Above Port	3.8762	3.8757	3.8761	0.0005
2L	25mm Below Port	3.8760	3.8757		0.0003
	13mm From Bottom	3.8767	3.8755		0.0012
	Taper	0.0007	0.0008		
	13mm From Top	3.8770	3.8761		0.0009
	25mm Above Port	3.8765	3.8760	3.8764	0.0005
3L	25mm Below Port	3.8762	3.8762		0.0000
	13mm From Bottom	3.8762	3.8768		0.0006
	Taper	0.0008	0.0008		
	13mm From Top				0.0000
	25mm Above Port			#014/01	0.0000
1R	25mm Below Port				6.0006
	13mm From Bottom				0.0000
	Taper				
	13mm From Top				0.0000
	25mm Above Port			#0///0/	0.0000
2R	25mm Below Port				0.0000
	13mm From Bottom				0.0000
	Taper				
	13mm From Top				0.0000
	25mm Above Port			#DIV/O	0.0000
3R	25mm Below Port				(000000)
	13mm From Bottom				11000000111
	Taper				

Post-Test Cylinder Bore Measurements, inches

	1	•	T	T	1
Cylinder	Depth	Thrust/Anti-Thrust	Front/Back	Avg Bore DIA	Out of Round
	13mm From Top	3.8767	3.8763		0.0004
	25mm Above Port	3.8758	3.8760	3.8760	0.0002
1L	25mm Below Port	3.8759	3.8758		0.0001
	13mm From Bottom	3.8750	3.8762		0.0012
	Taper	0.0017	0.0005		
	13mm From Top	3.8768	3.8771		0.0003
	25mm Above Port	3.8764	3.8766	3.8766	0.0002
2L	25mm Below Port	3.8762	3.8768		0.0006
	13mm From Bottom	3.8768	3.8761		0.0007
	Taper	0.0006	0.0010		
	13mm From Top	3.8776	3.8799		0.0023
	25mm Above Port	3.8769	3.8784	3.8775	0.0015
3L	25mm Below Port	3.8770	3.8770		0.0000
	13mm From Bottom	3.8766	3.8768		0.0002
	Taper	0.0010	0.0031		
	13mm From Top				0.0000
	25mm Above Port			#DIW0	0.0000
1R	25mm Below Port				0.0006
	13mm From Bottom				0.0000
	Taper				
	13mm From Top				1000000
	25mm Above Port			#0000	0.0000
2R	25mm Below Port				0.0000
	13mm From Bottom				0.0000
	Taper				
	13mm From Top				(10000000
	25mm Above Port			#00000	0.0000
3R	25mm Below Port				0.0000
	13mm From Bottom				0.0000
	Taper				

Cylinder Bore Diameter Changes, inches

Cylinder	Depth	Thrust/Anti-Thrust	Front/Back	Avg Bore DIA Change	Out of Round
	13mm From Top	0.0010	0.0001		0.0003
	25mm Above Port	0.0005	0.0006	0.0007	0.0001
1L	25mm Below Port	0.0004	0.0007		0.0001
	13mm From Bottom	0.0014	0.0006		0.0008
	Taper	0.0010	0.0006		
	13mm From Top	0.0002	0.0008		0.0000
İ	25mm Above Port	0.0002	0.0009	0.0005	0.0003
2L	25mm Below Port	0.0002	0.0011		0.0003
	13mm From Bottom	0.0001	0.0006		0.0005
	Taper	0.0001	0.0005		
	13mm From Top	0.0006	0.0038		0.0014
	25mm Above Port	0.0004	0.0024	0.0012	0.0010
3L	25mm Below Port	0.0008	0.0008		0.0000
02	13mm From Bottom	0.0004	0.0000		0.0004
	Taper	0.0004	0.0038		
	13mm From Top				0.0000
	25mm Above Port			#010/0	0.0000
1R	25mm Below Port				0.0000
	13mm From Bottom				0.0000
	Taper				
	13mm From Top				1000000
I	25mm Above Port			#DW/0	0.0000
2R	25mm Below Port				0.0000
	13mm From Bottom				0.0000
	Taper				
	13mm From Top				0.0000
	25mm Above Port			#D40+08	11000000
3R	25mm Below Port				0.0000
	13mm From Bottom				
	Taper				
	13mm From Top	0.0006	0.0016		
Avgerage All	25mm Above Port	0.0004	0.0013		
Cylinders	25mm Below Port	0.0005	0.0009		
	13mm From Bottom	0.0006	0.0004		
					_

Pre-Test Liner Surface Finish, μm

Pre Test Liner Surface Finish, µm					
1L	2L	3L	1R	2R	3R
1.06	1.02	1.11	1.2	1.14	1.24

Piston Skirt to Bore Clearance, inches

_				
	Cylinder	Average Bore Diameter	Piston Skirt Diameter	Clearance
	1L 3.8764		3.8712	0.0052
Test	2L	3.8761	3.8714	0.0047
Te	3L	3.8764	3.8713	0.0051
e-	1R	#047/81	3.8709	#DIV/01
Pre	2R	#DW/O!	3.8718	#01//01
	3R	#DAY/O!	3.8717	#DXXX0#
	1L	3.8760	3.8695	0.0065
est	2L	3.8766	3.8694	0.0072
Ĭ.	3L	3.8775	3.8693	0.0082
ost	1R	#047/81	3.8691	#DIV/01
Pc	2R	#DW/0!	3.8693	#0///0
	3R	#DAVO	3.8634	#DXXXX

Connecting Rod Bearing Mass Change, grams

Rod Bearing	Shell	Before	After	Change
41	Тор	73.2583	73.2302	0.0281
1L	Bottom	68.2943	68.2889	0.0054
2L	Тор	73.3244	73.3023	0.0221
ZL	Bottom	69.1636	69.1615	0.0021
21	Тор	73.3533	73.3362	0.0171
3L	Bottom	68.6608	68.6584	0.0024
40	Тор			
1R	Bottom			1101000001
20	Тор			
2R	Bottom			
2 D	Тор			110000001
3R	Bottom			0.0000

Maximum	0.0281
Average	0.0064

Slipper Bushing Mass Change, grams

Slipper Bushing	Before	After	Change
1L	55.8944	55.7998	0.0946
2L	55.9607	55.8983	0.0624
3L	55.9911	55.7765	0.2146
1R			0.0000
2R			
3R			0.0000

Maximum	0.2146	
Average	0.0619	

Pre-Test Slipper Bushing Tin Plate Thickness, inches

Slipper Bushing Tin Plate Thickness					
1L	2L	3L	1R	2R	3R
0.02160	0.02035	0.02070			

Top, Second, and Third Ring Radial Measurements, inches

Top Ring					
Cylinder	Position	Before	After	Delta	
	1	0.15590	0.15535	0.00055	
	2	0.15720	0.15710	0.00010	
1L	3	0.15690	0.15650	0.00040	
	4	0.15625	0.15585	0.00040	
	5	0.15490	0.15390	0.00100	
	1	0.15260	0.15180	0.00080	
]	2	0.15660	0.15585	0.00075	
2L	3	0.15695	0.15665	0.00030	
	4	0.15710	0.15595	0.00115	
	5	0.15455	0.15330	0.00125	
	1	0.15615	0.15330	0.00285	
	2	0.15680	0.15515	0.00165	
3L	3	0.15665	0.15635	0.00030	
	4	0.15700	0.15615	0.00085	
	5	0.15495	0.15355	0.00140	
	1			00000000	
	2			180 180 180 180	
1R	3			100000000	
	4			10.000000	
	5			10 000000	
	1			100000000	
	2			100000000	
2R	3			16/800000	
	4			100000000	
	5			NO SOCIOLO I	
	1			100000000	
	2				
3R	3			100000000	
	4			10/000000	
	5			181000000	
*Note - Mea	surements	with a negi	tive delta va	lue, shown	
in italics, a	re consider	red pre-test	measurem	ents error	

Second Ring					
Cylinder	Position	Before	After	Delta	
	1	0.14840	0.14780	0.00060	
	2	0.14740	0.14680	0.00060	
1L	3	0.14665	0.14635	0.00030	
	4	0.14870	0.14825	0.00045	
	5	0.14815	0.14765	0.00050	
	1	0.14790	0.14680	0.00110	
	2	0.14770	0.14665	0.00105	
2L	3	0.14785	0.14735	0.00050	
	4	0.14730	0.14540	0.00190	
	5	0.14805	0.14640	0.00165	
	1	0.14815	0.14385	0.00430	
	2	0.14770	0.14675	0.00095	
3L	3	0.14770	0.14605	0.00165	
	4	0.14770	0.14590	0.00180	
	5	0.14775	0.14540	0.00235	
	1			10.00000	
	2			0.00000	
1R	3			0.00000	
	4			0.00000	
	5			0.00000	
	1			0.00000	
	2			0.00000	
2R	3			0.00000	
	4			000000	
	5				
	1			10.00000	
	2			0.00000	
3R	3			0.00000	
	4			0.00000	
	5			0.00000	

(1999)		
		2
	2R	3
		4
		5
		1
(000)))		2
	3R	3
(000)		4
		5
now n	*Note - Mes	suraman

	5	6.00000
*Note - Mea	surement	s with a negitive delta value, shown
in italics, a	are conside	ered pre-test measurements error

Third Ring

Before

0.14680

0.14825

0.14780

0.14705

0.14620

0.14770

0.14865

0.14865

0.14695

0.14760

0.14755

0.14840

0.14825

0.14785

0.14770

After

0.14640

0.14785

0.14745

0.14675

0.14590

0.14690

0.14815

0.14810

0.14630

0.14650

0.14645

0.14735

0.14750

0.14665

0.14640

Delta

0.00040

0.00040

0.00035

0.00030

0.00030

0.00080

0.00050

0.00055

0.00065

0.00110

0.00110

0.00105

0.00075

0.00120

0.00130

Cylinder Position

1

3

5

4

2

5

1L

2L

3L

1R

Maximum 0.00285 Average 0.00055

Maximum	0.00430
Average	0.00079

Maximum	0.00130
Average	0.00043

in italics, are considered pre-test measurements error

Piston Ring Gap Measurements, inches

Cylinder	Ring No.	Before	After	Increase
	1	0.030	0.031	0.001
1L	2	0.030	0.033	0.003
	3	0.030	0.033	0.003
	4	0.018	0.022	0.004
	5a	0.018	0.021	0.003
	5b	0.019	0.021	0.002
	1	0.036	0.039	0.003
	2	0.030	0.037	0.007
2L	3	0.029	0.033	0.004
ZL	4	0.016	0.021	0.005
	5a	0.015	0.017	0.002
	5b	0.016	0.019	0.003
	1	0.030	0.039	0.009
	2	0.031	0.042	0.011
3L	3	0.030	0.037	0.007
3L	4	0.015	0.028	0.013
	5a	0.016	0.020	0.004
	5b	0.016	0.020	0.004
	1			0.000
	2			1100000
1R	3			
II	4			
	5a			
	5b			
	1			110.000
	2			0.000
2R	3			0.000
	4			
	5a			0.000
	5b			
	1			0.000
3R	2			0.000
	3			11100000
	4			0.000
	5a			0.000
	5b			100000

Ring No. 1 max increase	0.009
Ring No. 2 max increase	0.011
Ring No. 3 max increase	0.007
Ring No. 4 max increase	0.013
Ring No. 5a max increase	0.004
Ring No. 5b max increase	0.004

Ring No. 1 avg increase	0.003
Ring No. 2 avg increase	0.004
Ring No. 3 avg increase	0.003
Ring No. 4 avg increase	0.004
Ring No. 5a avg increase	0.002
Ring No. 5b avg increase	0.002

Piston Ring Mass Measurements, inches

Cylinder	Ring No.	Before	After	Delta
	1	22.9395	22.9353	0.0042
	2	20.2334	20.1810	0.0524
1L	3	20.1933	20.1634	0.0299
	4	27.6769	27.6619	0.0150
	5	24.5597	24.5403	0.0194
	1	22.9998	22.9923	0.0075
	2	20.2156	20.0700	0.1456
2L	3	20.2635	20.1877	0.0758
	4	27.8059	27.7920	0.0139
	5	24.0052	23.9765	0.0287
	1	22.9597	22.9331	0.0266
	2	20.2521	19.9914	0.2607
3L	3	20.2883	20.1909	0.0974
	4	27.7983	27.7838	0.0145
	5	23.8496	23.8138	0.0358
	1			
	2			0.0000
1R	3			1101000001
	4			10.0000
	5			
	1			10.0000
	2			110100001
2R	3			0.0000
	4			
	5			
	1			
	2			0.0000
3R	3			1101000001
	4			10000000
	5			

Ring No. 1 max decrease	0.0266
Ring No. 2 max decrease	0.2607
Ring No. 3 max decrease	0.0974
Ring No. 4 max decrease	0.0150
Ring No. 5 max decrease	0.0358

Ring No. 1 avg decrease	0.0077
Ring No. 2 avg decrease	0.0917
Ring No. 3 avg decrease	0.0406
Ring No. 4 avg decrease	0.0087
Ring No. 5 avg decrease	0.0168

Oil Control & Expander Ring Tension, pounds

	Oil Control & Expander Ring Tension							
	1L	1L 2L 3L 1R 2R 3R						
Top Oil Ring	10.7	12.1	11.2					
Second Oil Ring	11.3	11.6	11.8					

NOTE – To be used as reference only.

Measurements taken with uncalibrated legacy equipment.

Post Test Engine Ratings

Piston Ratings, Demerits

Ratings		Cylinder Number					
Raungs	1L	2L	3L	1R	2R	3R	Avg
Ring Sticking (F=Free, CS	=Cold Stuck, HS=H	lot Stuck, CP=Co	ollapsed Ring, N	lo. Denotes % O	f Ring Circumfe	rence)	
Тор	F (25%CP)	F (25%CP)	F (60%CP)				
Second	F	F	F				
Third	F	F	F				
Oil Control Rings	F	F	F				
2nd Ring Carbon		•		-	-		
Heavy Carbon							
Light Carbon							
Piston Carbon, Demerits							
No.1 Groove	41.00	30.00	37.75				36.25
No.2 Groove	30.25	25.00	33.25				29.50
No.3 Groove	24.50	25.75	25.00				25.08
No.1 Land	36.25	28.00	37.00				33.75
No.2 Land	60.25	46.00	40.00				48.75
No.3 Land	15.75	22.00	33.00				23.58
No.4 Land	10.00	10.50	15.25				11.92
Piston Lacquer, Demerits							
No.1 Groove	0.00	0.00	0.00				0.00
No.2 Groove	0.00	0.00	0.00				0.00
No.3 Groove	0.00	0.00	0.00				0.00
No.1 Land	0.00	0.00	0.00				0.00
No.2 Land	0.00	0.00	0.00				0.00
No.3 Land	1.33	0.73	0.92				0.99
No.4 Land	1.75	2.23	1.29				1.76
Total, Demerits	221.08	190.21	223.46			0.00	105.79
Miscellanous							
Top Groove Fill, %	37	24	19				26.67
Intermediate Groove Fill, %	43	27	47				39.00
Top Land Heavy Carbon, %	15	4	16				11.67
Top Land Flaked Carbon, %	0	0	0				0.00

Ring Face Distress, Demerits

Cylinder No.	Ring No.	Extreme Distress (1.00) % Area	Heavy Distress (0.75) % Area	Medium Distress (0.50) % Area	Light Distress (0.25) % Area	No Distress (0.00) % Area	Total Demerits
	1				17	83	0.043
1L	2				22	78	0.055
	3				25	75	0.063
	1				76	24	0.190
2L	2				92	8	0.230
	3				100	0	0.250
	1				100	0	0.250
3L	2				100	0	0.250
	3				96	4	0.240
	1						
1R	2						
	3						
	1						
2R	2						
	3						
	1						
3R	2						
	3						

Piston Ring Face	Fire	2nd	3rd
Distress	Ring	Ring	Ring
Average Demerits	0.1608	0.1783	0.1842

EOT Cylinder Liner Ratings, % Area

	Cylinder Liner Ratings						
	% Sc	uffing	Total % Area	% Polish		Total % Area	
	Т	AT	Scuffed	Т	AT	Polished	
1L	1	4	5	0	5	5	
2L	15	22	37	5	4	9	
3L	40	50	90	0	0	0	
1R			0			0	
2R			0			0	
3R			0			0	
	-	Perd	cent of total ring	travel area			

Piston Skirt Ratings

	Piston Skirt Ratings				
	Thrust	Anti-Thrust			
1L	2% Scuffed & Light Scratches	Very Light Scratches			
2L	20% Scuffed & Light Scratches	25% Scuffed & Light Scratches			
3L	35% Scuffed & Light Scratches	Very Light to Light Scratches			
1R					
2R					
3R					

EOT Intake Port Plugging & Slipper Bushing Exposed Copper, %

Intake Port Plugging			
1L	0		
2L	0		
3L	0		
1R			
2R			
3R			
Average	0		

Slipper Bushing % Exposed Copper			
1L	0		
2L	0		
3L	1		
1R			
2R			
3R			
Average	0.33		

Photographs

Oil Code:	LO274845/LO300491	EOT Date:	11/1/13	
Test No.:	LO274845-6V53T1-T-240HT	Test Length:	200	

Ring Pack 1 Left

Ring Pack 1 Right

Oil Code:	LO274845/LO300491	EOT Date: 11/1/13	
Test No.:	LO274845-6V53T1-T-240HT	Test Length: 200	

Piston 1 Left Thrust

Piston 1 Left Anti-thrust

Oil Code:	LO274845/LO300491	EOT Date:	11/1/13
Test No.:	LO274845-6V53T1-T-240HT	Test Length:	200

Liner 1 Left Thrust and Anti-thrust

Oil Code:	LO274845/LO300491	EOT Date: 11/1/13
Test No.:	LO274845-6V53T1-T-240HT	Test Length: 200

Ring Pack 2 Left

Ring Pack 2 Right

Oil Code:	LO274845/LO300491	EOT Date:	11/1/13
Test No.:	LO274845-6V53T1-T-240HT	Test Length:	200

Piston 2 Left Thrust

Piston 2 Left Anti-thrust

Oil Code:	LO274845/LO300491	EOT Date:	11/1/13
Test No.:	LO274845-6V53T1-T-240HT	Test Length:	200

Liner 2 Left Thrust and Anti-thrust

Oil Code:	LO274845/LO300491	EOT Date: 11/1/13
Test No.:	LO274845-6V53T1-T-240HT	Test Length: 200

Ring Pack 3 Left

Ring Pack 3 Right

Oil Code:	LO274845/LO300491	EOT Date: 11/1/13	
Test No.:	LO274845-6V53T1-T-240HT	Test Length: 200	

Piston 3 Left Thrust

Piston 3 Left Anti-thrust

Oil Code:	LO274845/LO300491	EOT Date: 11/1/13	
Test No.:	LO274845-6V53T1-T-240HT	Test Length: 200	

Liner 3 Left Thrust and Anti-thrust

Oil Code:	LO274845/LO300491	EOT Date: 1	1/1/13
Test No.:	LO274845-6V53T1-T-240HT	Test Length: 2	000

Slipper Bushings 1R, 2R, 3R

Slipper Bushings 1L, 2L, 3L

Oil Code:	LO274845/LO300491	EOT Date:	11/1/13	
Test No.:	LO274845-6V53T1-T-240HT	Test Length:	200	

Connecting Rod Bearings

Upper 1L, 2L, 3L, 1R, 2R, 3R

Lower 1L, 2L, 3L, 1R, 2R, 3R

APPENDIX D. Mack T-12 Test Reports

Mack T-12 EGR Engine Oil Test

Version 20100308

Title / Validity Declaration Page

Form 1

Conducted for

SOUTHWEST RESEARCH INSTITUTE

		T		(N) D 6	***	A				
		*	V = Valid; The Reference Oil/Non Reference Oil was Evaluated in Accordance with the Test Procedure.							
		I = Invalid; The Reference Oil/Non-Reference Oil was not Evaluated in								
	V Accordance with the Test Procedure.									
		N = Results cannot be Interpreted as Representative of Oil								
		1	Performance (Non-Reference Oil) and shall not be used in Determining an Average Test Result using Multiple Test Criteria							
		Avera	ge rest Result usii	ig Multiple Test Ci	пена					
,		NR = Non F	Reference Oil Test							
	NR	DO - Pofor	ence Oil Test							
		RO = Refer	ence on Test	WA-WA						
<u> </u>				T						
Stand:	83	Stand Run N	lo.: 108	Engine No.:	2M7188	Engine Hours:	1208			
End of	Test Date:	2014	41010	End of Test Tim	e:	06:12				
Oil Cod	e / CMIR: ^A		LO292039							
Formula	ation / Stand (Code: B								
	-		C			C				
Altcode	e1: ັ		Altcode2:	Altcode3: C						
			_ been conducted							
		opriate amendi associated wi	ments through the this test.	information letter	system. The	e remarks include	a in uns			
	r Non-Reference (······································								
	gistered Tests Or									
\mathcal{C}	rovided or Require									
*********	ibvided or moquin	<i>a by anome</i>	6.1. 29. 41	South	west Bess	erob Inctituto (D)				
			Submitted t	oy: Souti		arch Institute (R) Laboratory				
				2	# 1					
					Sic Sic	nature				
6	7				_					
	V Social V				Robert W					
R		F			Туре	ed Name				
8		<i>[]</i>			Research	Engineer				
		®			•	Title				

Mack T-12 EGR Engine Oil Test

Table of Contents

Laboratory:	SR	EOT Date:	20141010	EOT Time:	06:12
Test Number:	83-108-2	M7188-1208	Oil Code:	LO2920	39
Formulation / Stand Code:					

		TMC Form Number
1.	Title / Validity Declaration Page	1
11.	Table of Contents	2
Ш.	Summary of Test Method	3
IV.	Test Results Summary	4
٧.	Operational Summary	5
VI.	Rod Bearing Weight Loss	6
VII.	Ring Weight Loss	7
VIII.	Oil Analysis Summary	8
IX.	Liner Surface Roughness & Bore Diameter	9
Χ.	Liner Wear Summary	10
XI.	Unscheduled Downtime & Maintenance Summary	11
XII.	Test Fuel Analysis (Last Batch)	12
XIII.	Characteristics of the Data Acquisition System	13
XIV.	Build-up and Hardware Information	14
XV.	Rating Summary: Piston #1	15
XVI.	Rating Summary: Piston #2	16
XVII.	Rating Summary: Piston #3	17
XVIII.	Rating Summary: Piston #4	18
XIX.	Rating Summary: Piston #5	19
XX.	Rating Summary: Piston #6	20
XXI.	Main Bearing Weight Loss	21
XXII.	Ring Gap Measurements	22
XXIII.	T10 Merits Calculated with T-12 Results	23
XXIV.	ACC Test Laboratory Conformance Statement A	24
XXV.	ACC Engine Test Registration Form	***

The results of this report relate only to the items tested.

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute®.

AACC-Registered Tests Only

Mack T-12 EGR Engine Oil Test Summary of Test Method

Form 3

Laboratory:	SR	EOT Date:	20141010	EOT Time:	06:12
Test Number:	83-108-2M7188-1208		Oil Code:	LO2920	039
Formulation / Star	nd Code:				

The Mack T-12 EGR Engine Oil Test is a fuel engine-dynamometer test which evaluates the ability of a lubricant to minimize piston ring wear, cylinder liner wear, and lead corrosion, oil consumption, and oxidation. This test is a two-phase, steady state test (constant speed and load), run with heavy EGR. The first phase is 100 hours and is run with retarded fuel injection timing to produce elevated soot levels in the oil. The second phase is 200 hours and is run under heavy load conditions to induce piston ring and cylinder liner wear.

The test engine is a Mack E-TECH V-MAC III diesel engine with EGR. It is an in-line six cylinder, four-stroke, turbocharged engine. It has electronically controlled fuel injection with six individual electronic unit pumps. A one hour break-in is conducted prior to each test since a new engine build is used for each test.

Mack T-12 Test Conditions

Parameter	Phase I	Phase II
Time, h	100	200
Injection Timing, °BTDC	Variable	21
Speed, r/min	1800	1200
Fuel Flow, kg/h	59.2	63.5
Intake CO2, %	3.09	1.42
Exhaust CO2, %	9.25	9.78-10.08 typical
Inlet Manifold Temp., °C	90	80
Coolant Out Temp., °C	66	108
Fuel In Temp., °C	40	40
Oil Gallery Temp., °C	88	116
Intake Air Temp., °C	25	25
Intake Air Restriction, kPa	3.5 - 4.0	3.5 - 4.0
Inlet Manifold Pressure, kPa	265 Nominal	302-312
Exhaust Back Pressure, kPa	2.7 - 3.5	2.7 - 3.5
Crankcase Pressure, kPa	0.25 - 0.75	0.25 - 0.75
Power, kW	Record	Record
Torque, Nm	Record	Record
Pre-Turbine Exhaust Temp., °C	Record	Record
Tailpipe Exhaust Temp., °C	Record	Record
Oil Sump Temp., °C	Record	Record
EGR Pre-Venturi Temp., °C	Record	Record
Inlet Air Dew Point, °C	Record	Record
Inlet Air Humidity, kg/kg	Record	Record
Main Gallery Oil Pressure, kPa	Record	Record
Oil Filter Delta P, kPa	Not to exceed 138	Not to exceed 138

Mack T-12 EGR Engine Oil Test

Test Results Summary

Laboratory:	SR	EOT Date:	20141010	EOT Time: 06:12	
Test Number:	83-108-2M7188-1208		Oil Code:	LO292039	
Formulation / Stan	d Code:				

Test Results							
Date Test Started:	20140926	Start Time:	22:58	Test Length:	300		
TMC Oil Code: A		Laboratory Oil Code:	LO-292039	SAE Viscosity:	N/A		
Average TGA Soot % at 100 h		4.3					
Centrifugal Oil Filter	Mass Gain, g		399.2				
Oil Filter Delta P, kP			12				
EOT TBN			3.9				

LO : I BIT					
	Delta Pb @ EOT (ppm)	Avg. Liner Wear (µm)	Avg. Top Ring Weight Loss (mg)	Oil Consumption (g/h)	Delta Pb 250-300h (ppm)
Original Result	40	29.7	63	101.1	17
Transformed Result B	3.6889	29.7000	63.0000	4.6161	2.8332
Correction Factor B	0.8130	0.8180	0.7190	0.9130	0.7100
Corrected Transformed Result B	2.9991	24.2946	45.2970	4.2145	2.0116
Severity Adjustment ^B	0.0000	1.1294	0.0000	-0.0496	0.0000
Final Transformed Result B	2.9991	25.4240	45.2970	4.1649	2.0116
Final Original Unit Result	20	25.4	45	64.4	7
Mack Merits C	266.7	-87.5	342.9	156.0	260.0
Total Mack Merits: C			938.1		

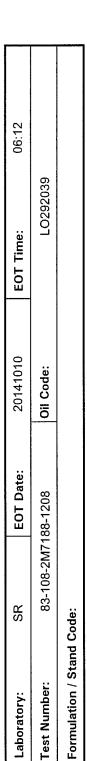
	Last	Stand Reference Results	
Test Number:	83-99/	A-2M6341-300	
Oil Code:	CMIR-	97766 SR-101	
Test Length:	300	TMC Oil Code: A	821-3
EOT Date:	20131216	EOT Time:	04:58
Number of Tests Sind	ce Stand Calibration: D		5
Stand Calibration Exp	oiration Date:		
Average TGA Soot %	at 100 h:	-	4.4

	Delta Pb @ EOT (ppm)	Avg. Liner Wear (µm)	Avg. Top Ring Weight Loss (mg)	Oil Consumption (g/h)	Delta Pb 250-300h (ppm)
Final Original Unit Result	18	10.1	48	62.9	8

A Reference Tests Only

B Transformed Units apply to Delta Pb, @ EOT, Oil Consumption, and Delta 250-300 h only.

C Non-Reference Tests Only


D Operationally valid tests only, including current test.

EGR Engine Oil Test Mack T-12

Operational Summary

Form 5

Units r/min kg/h °C °C °C °C °C °C	QI Threshold	EOT QI	Target	······································	Average	950	Samples B	$Bad^{\mathcal{C}}$	Over/Under
			ı			año			Kange
	0.000	1.000	1800 1200	00	1800	1200	3000	0	0
	0.000	0.998	59.2 63.5		59.19	63.50	3000	0	0
	0.000	0.368	08 06	_	91	80	3000	0	0
	0.000	0.884	66 108	8	99	108	3000	0	0
	0.000	0.985	40		40	(3000	0	0
	0.000	0.309	88 116	9	88	116	3000	0	0
	000.0	0.891	25		25		3000	0	0
Inlet Air Restriction kPa			3.5 - 4.0		3.73	3	3000	0	0
O Inlet Man. Pressure KPa			265 Nominal 307±5	+ 5	263	308	3000	0	0
Exh. Back Pressure kPa			2.7 - 3.5		3.1	1	3000	0	0
Crankcase Pressure KPa			0.25 - 0.75	2	0.74	.4	3000	0	0
Intake CO2 %			$3.09 \pm .05 1.42 \pm .05$	€.05	3.07	1.40			
Exhaust CO2 %			$9.25 \pm .15 9.93 \pm .15$	±.15	9.27	10.04			
Parameter Units	Typical \	Typical Values $^{\it E}$		Average	age				
Torque	1232-1397	2434-2543	1360		2	2495			
	212-263	179-228	230.8		2	202.5			
Pre-Turbine Temp. (L) °C	482-605	504-759	541		v	641			
A Pre-Turbine Temp. (R) °C	503-567	491-758	532		9	631			
Tailpipe Temp.	303-354	280-433	311		(,)	399			
Oil Sump Temp.	92-105	73-190	96		`	128			
EGR Pre-Venturi Temp. °C	138-201	107-126	155		`	121			
Blowby L/min	41-176	71-264	0.0			0.0			
Inlet Air Dew Point °C	6-22	6-22	22			22			
EGR Pre-Venturi Pressure kPa	226-331	235-336	283			283			
Main Gallery Oil Pressure KPa	394-502	165-269	332		•	163			

A QI values above the threshold are acceptable by the Mack Surveillance Panel. review. Refer to Annex A5.

B Total number of data points taken. Minimum acceptable value is 3000.
C Number of Bad Quality Data points not used in the calculation of the statistical measures.
D Number of points clipped by over/under range limits.
E Typical values determined from reference oil test database.

Mack T-12 EGR Engine Oil Test Rod Bearing Weight Loss Form 6

 Laboratory:
 SR
 EOT Date:
 20141010
 EOT Time:
 06:12

 Test Number:
 83-108-2M7188-1208
 Oil Code:
 LO292039

 Formulation / Stand Code:

Cylinder #	Location	SOT Weight, g	EOT Weight, g	Weight Change, mg
1	Upper	98.5387	98.3111	227.6
2	Upper	98.4897	98.2718	217.9
3	Upper	98.7648	98.4125	352.3
4	Upper	98.5149	98.3045	210.4
5	Upper	98.5175	98.2977	219.8
6	Upper	98.6252	98.3200	305.2

Summary	As Measured	Outlier Screened
Upper Bearing Average Weight Loss, mg	255.5	255.5
Upper Bearing Weight Loss Std. Dev., mg	58.9	58.9
Upper Bearing Minimum Weight Loss, mg	210.4	210.4
Upper Bearing Maximum Weight Loss, mg	352.3	352.3
A Outlier Upper Rod Bearing	N	

A Cylinder number

Cylinder #	Location	SOT Weight, g	EOT Weight, g	Weight Change, mg	
1	Lower	98.0867	98.0829	3.8	
2	Lower	97.9984	97.9932	5.2	
3	Lower	97.9679	97.9631	4.8	
4	Lower	97.9015	97.8997	1.8	
5	Lower	97.7933	97.7890	4.3	
6	Lower	97.6650	97.6641	0.9	
Lower Bearing	Lower Bearing Average Weight Loss, mg				
Lower Bearing	1.7				
Lower Bearing	0.9				
Lower Bearing	Maximum Weigh	nt Loss, mg		5.2	

Conrod Bearing Batch ID	180919-X

Mack T-12 EGR Engine Oil Test Ring Weight Loss Form 7

Laboratory:	SR EOT Date:		20141010	EOT Time:	06:12
Test Number:	83-108-2M7188-1208		Oil Code:	LO2920)39
Formulation / Stan	ıd Code:				

Cylinder No.	Top Ring SOT Weight, g	Top Ring EOT Weight, g	Weight Loss, mg
1	31.3774	31.2829	94.5
2	31.3696	31.3163	53.3
3	31.2862	31.2404	45.8
4	31.3666	31.3294	37.2
5	31.4059	31.3260	79.9
6	31.2560	31.1869	69.1

Summary	As Measured ^A	Outlier Screened
Top Ring Average Weight Loss, mg	63	63
Top Ring Weight Loss Std. Dev., mg	21.8	21.8
Top Ring Minimum Weight Loss, mg	37.2	37.2
Top Ring Maximum Weight Loss, mg	94.5	94.5
Outlier Ring ^B	N	

A Results calculated without rings with plasma flaking.

B Ring number wear results are not currently outlier screened.

Cylinder No.	2nd Ring SOT Weight, g	2nd Ring EOT Weight, g	Weight Loss, mg
1	27.2100	27.1724	37.6
2	27.2182	27.1949	23.3
3	27.2668	27.2410	25.8
4	27.2009	27.1767	24.2
5	27.2668	27.2395	27.3
6	27.0766	27.0431	33.5
		2nd Ring Average Weight Loss, mg	28.6
		2nd Ring Weight Loss Std. Dev.,mg	5.7
		2nd Ring Min. Weight Loss, mg	23.3
		2nd Ring Max. Weight Loss, mg	37.6

Cylinder No.	Oil Ring SOT Weight, g	Oil Ring EOT Weight, g	Weight Loss, mg
1	36.9154	36.8868	28.6
2	37.2910	37.2648	26.2
3	37.1347	37.1074	27.3
4	36.2557	36.2271	28.6
5	36.3249	36.2950	29.9
6	37.1177	37.0767	41.0
		Oil Ring Average Weight Loss, mg	30.3
		Oil Ring Weight Loss Std. Dev.,mg	5.4
		Oil Ring Min. Weight Loss, mg	26.2
		Oil Ring Max. Weight Loss, mg	41.0

EGR Engine Oil Test Oil Analysis Summary Form 8 Mack T-12

06:12 LO292039 EOT Time: 20141010 Oil Code: EOT Date: 83-108-2M7188-1208 SR Formulation / Stand Code: Test Number: Laboratory:

	T															
	ž	٧	<1	1>	2	2			2	2	2	3	3	3	4	4
	Na	14	6	12	13	10			15	11	21	25	24	56	56	28
	Sn	₹	<1	<1	<٠	٧			3	4	5	5	2	9	2	2
(mdd)	S	4	12	14	17	19			23	27	28	31	32	37	38	43
Metals Elements (ppm)	A	1	2	2	3	4			4	9	9	9	2	2	6	10
Metals	Ö	۲	<1	1	7	3			4	9	9	2	7	2	8	6
	o.	₹	2	10	12	14			27	40	38	44	44	46	49	54
	Pb	-	2	3	2	3			თ	6	10	14	15	24	27	41
	Fe	-	17	27	45	59			123	167	190	230	254	284	310	372
ation	Peak Height	0.0	1.5	2.5	4.4	5.8			12.6	16.4	19.8	24.2	26.4	32.2	34.2	38.8
IR Oxidation	Integrated	0.0	-17.4	-61.1	-53.8	-81.9			48.4	144.7	301.0	479.3	591.6	847.6	932.5	1123.6
	TAN	2.4	1.8	2.0	2.3	2.3			3.2	3.4	3.6	3.8	3.6	3.9	4.4	5.0
	TBN	9.8	9.1	8.3	7.8	7.2			5.4	5.1	4.0	3.9	3.6	3.9	4.0	3.9
Viscosity	Increase cSt		0.18	0.55	1.10	1.50			1.59	2.09	2.51	3.25	3.71	4.70	5.19	6.51
Viscosity	at 100°C cSt	8.57	8.75	9.12	29.6	10.07			10.16	10.66	11.08	11.82	12.28	13.27	13.76	15.08
Soot	Wt. % TGA	0.2	1.	2.1	3.2	4.3	4.3	4.3	4.6	5.1	5.2	5.7	5.6	6.3	6.4	7.1
	Hours	000	025	020	075	100	100 (2nd)	100 Avg.	125	150	175	200	225	250	275	300

Summary	As Measured	Outlier Bearing
Delta Pb @ EOT, ppm	40	40
Delta Pb 250-300 h, ppm	17	
MRV Yield Stress, Pa	0	

1500	2768
MRV @ 100h, cP	MRV @ 100h with Severity Adjustment, cP

Mack T-12

EGR Engine Oil Test Liner Surface Roughness & Bore Diameter Form 9

EOT Time: EOT Date: Laboratory: 20141010 06:12 SR Oil Code: Test Number: LO292039 83-108-2M7188-1208 Formulation / Stand Code:

Liner No.	Location	Ra (µm)	Bore Diameter (mm)		Ra (µm)	Dia. (mm)
	Top Ring Travel @ 0°	16.60	123.848	Avg	17.15	123.839
1	Top Ring Travel @ 90°	16.90	123.830	Std Dev	0.84	
'	Top Ring Travel @ 180°	16.70		Min	16.60	
	Top Ring Travel @ 270°	18.40		Max	18.40	
	Top Ring Travel @ 0°	16.40	123.825	Avg	16.25	123.828
,	Top Ring Travel @ 90°	16.90	123.830	Std Dev	0.79	
2	Top Ring Travel @ 180°	16.60		Min	15.10	:
	Top Ring Travel @ 270°	15.10		Max	16.90	
	Top Ring Travel @ 0°	18.30	123.840	Avg	17.50	123.835
2	Top Ring Travel @ 90°	16.50	123.830	Std Dev	0.75	
3	Top Ring Travel @ 180°	17.70		Min	16.50	
	Top Ring Travel @ 270°	17.50		Max	18.30	
	Top Ring Travel @ 0°	17.70	123.825	Avg	17.60	123.825
4	Top Ring Travel @ 90°	17.60	123.825	Std Dev	0.45	
4	Top Ring Travel @ 180°	17.00		Min	17.00	
	Top Ring Travel @ 270°	18.10		Max	18.10	
	Top Ring Travel @ 0°	17.80	123.822	Avg	17.52	123.821
5	Top Ring Travel @ 90°	16.50	123.820	Std Dev	0.89	6
5	Top Ring Travel @ 180°	17.20		Min	16.50	
	Top Ring Travel @ 270°	18.60		Max	18.60	
	Top Ring Travel @ 0°	17.00	123.843	Avg	17.48	123.832
6	Top Ring Travel @ 90°	16.30	123.822	Std Dev	1.08	
0	Top Ring Travel @ 180°	17.80		Min	16.30	
	Top Ring Travel @ 270°	18.80		Max	18.80	

	Ra (µm)	Bore Diameter (mm)
Average Surface Roughness & Bore Diameter	17.25	123.830
Standard Deviation Surface Roughness & Bore Diameter	0.51	0.007
Minimum Surface Roughness & Bore Diameter	16.25	123.821
Maximum Surface Roughness & Bore Diameter	17.60	123.839

Mack T-12 EGR Engine Oil Test Liner Wear Summary Form 10

 Laboratory:
 SR
 EOT Date:
 20141010
 EOT Time:
 06:12

 Test Number:
 83-108-2M7188-1208
 Oil Code:
 LO292039

 Formulation / Stand Code:

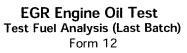
		Wear Step (μm)								
		Cylinder Number								
Position	1	2	3	4	5	6				
1:00	64.8	36.5	40.3	48.5	29.2	48.6				
2:00	33.0	28.2	41.6	44.6	26.0	46.3				
3:00 (Thrust)	34.2	22.8	51.0	54.4	46.9	65.8				
4:00	13.1	17.7	20.0	25.8	44.9	52.3				
5:00	23.5	39.1	28.9	35.7	35.3	52.5				
6:00 (Rear)	10.5	19.0	15.6	10.5	19.3	49.8				
7:00	17.3	23.1	17.7	8.1	17.2	29.3				
8:00	24.3	38.2	34.9	21.4	37.5	29.2				
9:00 (Anti-Thrust)	45.0	47.8	48.6	36.0	34.5	43.8				
10:00	39.3	35.4	42.2	30.8	30.1	42.5				
11:00	12.8	19.8	23.4	17.6	19.4	42.2				
12:00 (Front)	36.6	15.4	21.4	24.6	17.0	43.3				
Average	29.5	28.6	32.1	29.8	29.8	45.5				

Summary	As Measured	Outlier Screened
Average, µm	32.6	29.7
Std. Dev., µm	6.4	1.3
Minimum, µm	28.6	28.6
Maximum, µm	45.5	32.1
Outlier Liners ^A		6

^A Cylinder Number

Mack T-12

EGR Engine Oil Test Unscheduled Downtime & Maintenance Summary Form 11



Laboratory:	\$R	EOT Date:	20141010	EOT Time:	06:12
Test Number:	83-108-2	M7188-1208	Oil Code:	LO2920	039
Formulation / Stan	d Code:				

Number of D	Oowntime Occ	currences:	9
Test Hours	Date	Downtime	Reasons
56:45	20140929	2:15	Replaced INMAN thermocouple.
86:06	20140930	2:29	Replaced EGR cooler.
96:24	20141001	4:52	Replaced ruptured coolant out hose.
119:19	20141002	0:19	Dynamometer maintenance.
121:22	20141002	0:18	Replaced IMT thermocouple.
163:37	20141004	1:19	Replaced blown coolant hose.
214:02	20141006	2:17	Repaired front oil leak.
225:01	20141006	0:21	Down per project manager.
299:05	20141010	4:53	Repaired boost leak
Total Do	owntime	019:03	

Other Comments				
Number of Comment Lines:	0			
L			·	

Mack T-12

Laboratory:	SR EO	T Date:	20141010	EOT Time:	06:12
Test Number:	83-108-2M7188-1	208	Oil Code:	LO2920	039
Formulation / Star	nd Code:				
Supplier:	PHILLIPS		Batch Identifiers:	14HPI	21002

Measurement	Specifications	Ana	lysis	Test Method
		New	EOT	
Total Sulfur, ppm	7 -15	10.20	8.30	D 5453
Gravity, °API	34 - 37	36.5	36.4	D 4052
Hydrocarbon Composition				
Aromatics % wt.	26 - 31.5	28	3.0	D 5186
Olefin % Vol.	Report	2.	.4	D 1319
Cetane Index	Report	45	5.9	D 976
Cetane No.	43 - 47	45	5.0	D 613
Copper Strip Corrosion	1 Maximum			D 130
Flash Point, °C	54 Minimum	6	3	D 93
Pour Point, °C	-18 Maximum	-2	27	D 97
Carbon Residue on 10% Residuum, %	0.35 Maximum	0.	10	D 524 (10% Bottoms)
Water & Sediment, % Vol	0.05 Maximum	0.0	00	D 2709
Viscosity, cSt @ 40°C	2.0 - 2.6	2.	.3	D 445
Total Acid Number	0.05 Maximum	0.0	01	D 664-1
Strong Acid Number	0.00 Maximum	0.0	00	D 664-1
Accelerated Stability	1.5 max	0.	.3	D 2274
Ash, % Wt.	0.005 max	0.0	000	D 482
SLBOCLE, g	3100 min ^A			D 6078 ^A
90% Distillation, °C	293 - 332	30)4	D 86

 $^{^{\}it A}$ May be altered to be consistent with CARB or ASTM diesel fuel specifications.

Mack T-12 EGR Engine Oil Test

Characteristics of the Data Acquisition System

Form 13

Parameter	Sensing Device	Calibration Frequency	Record Device	Observation Frequency	Record Frequency	Log Frequency	System Response
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Temperatures							
Oil @ Filt.	T/C	Reference	C/D	0	0	1/6 min.	3.0s
Fuel In.	T/C	Reference	C/D	0	0	1/6 min.	3.0s
Intake Air	T/C	Reference	C/D	0	0	1/6 min.	3.0s
Intake Man.	T/C	Reference	C/D	0	0	1/6 min.	3.0s
Pre-Turb.	T/C	Reference	C/D	0	0	1/6 min.	3.0s
Cool. Out	T/C	Reference	C/D	0	0	1/6 min.	3.0s
Other						To go professions	
Fuel Flow	Mass Flow	Reference	C/D	0	0	1/6 min.	36.1s
Engine RPM	Magnetic	Reference	C/D	0	0	1/6 min.	2.0s
Load	StrainGage	Reference	C/D	0	0	1/6 min.	0.5s
Inlet Restr.	Transducer	Reference	C/D	0	0	1/6 min.	3.0s
Exh. Press.	Transducer	Reference	C/D	0	0	1/6 min.	3.0s
Oil Gal. Press.	Transducer	Reference	C/D	0	0	1/6 min.	3.0s

Legend:

- (1) Operating Parameter
- (2) The Type of Device Used to Measure Temperature, Pressure or Flow
- (3) Frequency at Which the Measurement System is Calibrated
- (4) The Type of Device Where Data is Recorded
 - LG Handlog Sheet
 - DL Automatic Data Logger
 - SC Strip Chart Recorder
 - C/M Computer, Using Manual Data Entry
 - C/D Computer, Using Direct I/O Entry
- (5) Data is Observed but Only if Recorded Off Spec.
- (6) Data are Recorded but are not Retained at EOT
- (7) Data is Logged as Permanent Record, Note Specify if:
 - SS Snapshot Taken at Specified Frequency
 - AG/X Average of X Data Points at Specified Frequency
- (8) Time for the Output of Reach 63.2% of Final Valve for Step Change at Input

Mack T-12 EGR Engine Oil Test Build-up and Hardware Information Form 14

Laboratory:	SR	EOT Date:	20141010	EOT Time:	06:12
Test Number:	83-108-2M	7188-1208	Oil Code:	LO2920	039
Formulation / Star	nd Code:				

Injecti	on Timing
Timing Hours	Timing (Deg)
0	10.80
0	Total Timing Changes

	Hardware	
Part	Part Number	Serial Number
Primary Turbo Charger	697GC5176M7	
Secondary Charger	3801847RX	:
Cylinder Head (front)	732GB3494M2	Head Set L.S. 20
Cylinder Head (rear)	732GB3494M2	Head Set L.S. 20
Pistons	5125M	
Injection Nozzles	736GB419M3	
Rod Bearings	M1062GBT100-X	
Liners	509GC471	
Ring Set	353GC2141	

Cylinder Kit Location	CPD ID Number
Cylinder 1	180919-VUXO
Cylinder 2	180920-VUXO
Cylinder 3	180921-VUXO
Cylinder 4	180922-VUXO
Cylinder 5	180923-VUXO
Cylinder 6	180924-VUXO

S) A -

Mack T-12
EGR Engine Oil Test
Rating Summary: Piston No. 1
Form 15

Laboratory:	SR	EOT Date:	20141010	EOT Time:	06:12
Test Number:	83-108-2M7188-1208	88-1208	Oil Code:	LO292039	
Formulation / Stand Code:	and Code:				
Date Rated:	20141013	Rater Initials:	RBV	Verified By:	MM

Tot	Total Piston Ratings Summary	ummary																		
			Gro	Grooves			Laı	Lands			Gro	Groove		Lands	spı		Oil Cooling	lino	Under	Φ.
	Dep.	No.	. 1	No.	5.2	No.	1.1	No.	. 2	Dep.	No	No. 3	No.	.3	No. 4	4	5	D.	Crown	-
	Factor	A,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.	Factor	A,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.
	HC - 1.0							9	6.00											
ι	MC - 0.5	9	3.00																	
stboi	LC25	94	23.50	100	25.00	75	18.75	89	22.25		5	1.25	70	17.50		,	06	22.50	15	
)	Total	100	26.50	100	25.00	75	18.75	95	28.25		5	1.25	70	17.50	0	0.00	90	22.50	15	
	8 - 9																			
	7 - 7.9									7.5										
	6 - 6.9																			
	5 - 5.9																			
ų	4 - 4.9									4.5										
sinı	3 - 3.9																			
εV	2 - 2.9															****				
	1 - 1.9									1.5						*********	-			
	6.0 - 0<																			
	Clean		0		0	25	0	5	0	Clean	95	0	30	0	100	0		0		
	Total	0	0.00	0	0.00	25	0.00	5	0.00		92	0.00	30	0.00	100	0.00	0	0.00	0	
Ra	Rating	26	26.50	25	25.00	18	18.75	28	28.25		1	1.25	17.	17.50	00.00	00	22.50	0,0	3.75	~
Ľ	Location Factor	•	2		3		1		3		. 1	20	2	20	09	0	0.5			₩
Inc	Industry Rating	53	53.00	7.5	75.00	18	18.75	84	84.75		25	25.00	350.00	00.	0.00	00	11.25	25	3.75	
	WDP	•				TGC				TLC		1	Unweight	Unweighted Deposits	sits		T.L.	T.L. Flaked Carbon %	rbon %	
	621.6					26.50				18.75			1	143.6				0		
ل								1												

Mack T-12 EGR Engine Oil Test Rating Summary: Piston No. 2 Form 16

Laboratory:	SR	EOT Date:	20141010	EOT Time:	06:12
Test Number:	83-108-2M7188-1208	188-1208	Oil Code:	LO292039	
Formulation / Stand Co	and Code:				
Date Rated:	20141013	Rater Initials:	RBV	Verified By:	MM

Tot	Total Piston Ratings Summary	ummary																1		
			Groc	Grooves			Lands	spı			Gro	Groove		Lands	spi		oriloo Jio	o ijo	Under	e
	Dep.	No.	.1	No.	. 2	.oN	. 1	No.	. 2	Dep.	No	No. 3	No.	3	No.	4	2	filling.	Crown	E.
	Factor	A,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.	Factor	A,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.
	HC - 1.0			4	4.00	10	10.00	2	2.00											
ι	MC - 0.5																			
supoi	LC25	100	25.00	96	24.00	74	18.50	94	23.50				61	15.25			90	22.50	10	2.50
0	Total	100	25.00	100	28.00	84	28.50	96	25.50		0	0.00	61	15.25	0	0.00	06	22.50	10	2.50
	6 - 8																			
	7 - 7.9									7.5										
	6 - 6.9																	***		
	5 - 5.9																			
ų	4 - 4.9									4.5										
sin	3 - 3.9																			
εV	2 - 2.9																			
	1 - 1.9									1.5										
	6.0 - 0<																			
	Clean		0		0	16	0	4	0	Clean	100	0	39	0	100	0		0		0
	Total	0	0.00	0	00.00	16	0.00	4	0.00		100	0.00	39	0.00	100	0.00	0	0.00	0	0.00
Rat	Rating	25.	25.00	28	28.00	28	28.50	25.	25.50		0	0.00	15.	15.25	00.0	90	22.	22.50	2.50	
Loc	Location Factor	, 7	2		3		-	.,	3		1.4	20	2	20	09	0	o.	0.5	-	
pul	Industry Rating	50.	50.00	84	84.00	28	28.50	76.	76.50		0.	0.00	305.00	.00	0.00	90	11.	11.25	2.50	
	WDP	_				TGC				TLC		1	Unweighted Deposits	ed Depos	sits		T.L.	T.L. Flaked Carbon %	ırbon %	
<u> </u>	557.7					25.00				28.50			_	147.2				0		
											T					1				

N.A.

Mack T-12
EGR Engine Oil Test
Rating Summary: Piston No. 3
Form 17

Laboratory:	SR	EOT Date:	20141010	EOT Time:	06:12
Test Number:	83-108-2M7188-1208	88-1208	Oil Code:	LO292039	
Formulation / Stand Code:	and Code:				
Date Rated:	20141013	Rater Initials:	RBV	Verified By:	MM

Total Pis	Total Piston Ratings Summary	ummary																		
			Grooves	ves			Lands	sp			Gro	Groove		Lands	spi		ä		Under	ē
	Dep.	No.	١.	No. 2	2	No.	.1	No. 2	2	Den.	S	No. 3	No.	e,	No. 4	4			Crown	wn
	Factor	A,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.	Factor	A,%	Dem.	A ,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.
H	HC - 1.0			7	7.00			7	11.00				_	1.00	:					
	MC - 0.5																			
arboı	LC25	100	25.00	93	23.25	78	19.50	84	21.00				30	7.50			90	22.50	20	5.00
C Total	al	100	25.00	100	30.25	78	19.50	95	32.00		0	00.0	31	8.50	0	0.00	06	22.50	20	5.00
8	6 -																			
7 -	7 - 7.9									7.5										
- 9	6.9																			
5 -	5.9																			
4	- 4.9									4.5										
sin1	- 3.9																			
2	- 2.9																-			
-	1 - 1.9									1.5										
^	>0 - 0.9																			
Clean	an		0		0	22	0	5	0	Clean	100	0	69	0	100	0		0		0
Total	-	0	00.00	0	0.00	22	0.00	5	0.00		100	0.00	69	0.00	100	0.00	0	0.00	0	0.00
Rating		25.00	00	30.25	25	19.	19.50	32.00	00		0.0	00.0	8.50	20	0.00	0(22.50	50	5.00	0
Location	Location Factor	2		3		,		3			2	20	20	0	09	0	0.5	5	-	
Industry Rating	Rating	50.00	00	90.75	75	19.	19.50	96.00	00		0.1	0.00	170.00	.00	0.00	0(11.25	25	5.00	00
	WDP					TGC				TLC		ר	Inweight	Unweighted Deposits	iits		T.L.	T.L. Flaked Carbon %	% noque	
	442.6				, ,	25.00				19.50			-	142.7				0		

SH-

Mack T-12
EGR Engine Oil Test
Rating Summary: Piston No. 4
Form 18

			01 110		
Laboratory:	SR	EOT Date:	20141010	EOT Time:	06:12
Test Number:	83-108-2M7188-1208	188-1208	Oil Code:	LO292039	
Formulation / Stand Code:	ind Code:				:
Date Rated:	20141013	Rater Initials:	RBV	Verified By:	MM

L	Total Piston Ratings Summary	Summary																	
			Groc	Grooves			Lands	spu			ğ	Groove		Lai	Lands		pailoo, liO		
	Dep.	No.	. 1	No.	. 2	No.	. 1	No	No. 2	Dep.	ž	No. 3	No.	. 3	No.	No. 4	000	nu n	
	Factor	A,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.	Factor	A,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.	
	HC - 1.0			1	1.00	2	2.00	5	5.00										
u	MC - 0.5	9	3.00																
oque	LC25	94	23.50	66	24.75	95	23.75	88	22.00		9	1.50	45	11.25			85	21.25	
o	Total	100	26.50	100	25.75	26	25.75	93	27.00		9	1.50	45	11.25	0	0.00	85	21.25	
																			-
L	6-8																		
	7 - 7.9									7.5									
	6 - 6.9						,												\dashv
	5 - 5.9																		
Ч	4 - 4.9									4.5									
ainn	3 - 3.9																		
εV	2 - 2.9																		
	1 - 1.9									1.5									
	>0 - 0.9																		
	Clean		0		0	3	0	7	0	Clean	94	0	55	0	100	0		0	
	Total	0	0.00	0	0.00	3	0.00	7	0.00		94	0.00	55	0.00	100	0.00	0	0.00	
Ra	Rating	26.50	50	25	25.75	25	25.75	27.	27.00		-	1.50	11	11.25	0.0	0.00	21.25	35	
Ľ	Location Factor	2		.,	3		1	.,	3		- 1	20	2	20	9	09	0.5		
<u>l</u> ng	Industry Rating	53.00	00	77	77.25	25	25.75	81.	81.00		30	30.00	22	225.00	0.1	0.00	10.62	32	
	WDP					TGC				TLC	*********		Unweigh	Unweighted Deposits	sits		T.L.	T.L. Flaked Carbon %	8
	505.0	_				26.50				25.75				141.6				0	ļ
																			П

Mack T-12 EGR Engine Oil Test Rating Summary: Piston No. 5 Form 19

Laboratory:	SR	EOT Date:	20141010	EOT Time:	06:12
Test Number:	83-108-2M7188-1208	188-1208	Oil Code:	LO292039	
Formulation / Stand Code:	nd Code:				
Date Rated:	20141013	Rater Initials:	RBV	Verified By:	MM

		F	HC - 1.0		LC25	C. Total	6 - 8	7 - 7.9	6 - 6.9	5 - 5.9	4 - 4.9	sin1 3 - 3.9	≥ 2 - 2.9	1 - 1.9	>0 - 0	Clean	Total	Rating	Location Factor	Industry Rating		
	Jen.	Factor	0	5.	5						-		_	-	6.0				ıctor	ting	WDP	
	No. 1	A,%			100	100											0	25.00	2	50.00		
Grooves	-	Dem.			25.00	25.00										0	0.00	00		00		•
ves	Š	A,%	rt		95	100											0	28.		86.		
	No. 2	Dem.	5.00		23.75	28.75										0	00.0	28.75	3	86.25		
	No.	A,%			06	06										10	10	22		22	TGC	
Lai		Dem.			22.50	22.50										0	0.00	22.50	1	22.50		
Lands	No	A,%	ထ		89	95										5	5	28		84		
	No. 2	Dem.	6.00		22.25	28.25										0	0.00	28.25	3	84.75		
	Den.	Factor						7.5			4.5			1.5		Clean					TLC	
ق ا		A,%				0		_								100	100))		
Groove	No. 3	Dem.				0.00										0	00.00	00.0	20	0.00		
	Ž	A,%	er.		84	87	 									13	13	77	,	48	Unweigh	
La	No. 3	Dem.	3.00		21.00	24.00										0	0.00	24.00	20	480.00	Unweighted Deposits	
Lands	No. 4	A,%				0										100	100	00.0	09	00'0	sits	
	4	Dem.				0.00		•								0	00.00	0		0		-
:	Oil Cooling	A.%			92	95											0	23.75	0.5	11.88	T.L. F	
	guil	Dem.			23.75	23.75										0	00.00	'5	-	88	T.L. Flaked Carbon %	
Indor	Crown	A,%			10	10											0	2.50	1	2.50	rbon %	
à	Z Z	Dem			2.50	2.50										0	0.00	0		0		

Mack T-12 EGR Engine Oil Test Rating Summary: Piston No. 6

Form 20

06:12 Σ LO292039 Verified By: EOT Time: 20141010 RBV Oil Code: Rater Initials: EOT Date: 83-108-2M7188-1208 20141013 SR Formulation / Stand Code: Test Number: Laboratory: Date Rated:

To	Total Piston Ratings Summary	Summary		40000			- Page	1				gnood		-	- Part					
	Den	No.	-	No.	0. 2	No.	_	No.	2 .	G	5 Z	No. 3	Š.	_ا ب	No.	4.	Oil Cooling	olin		g Crown
	Factor	A,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.	Factor	A,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.	c.	n. A,%
	HC - 1.0			45	45.00	4	4.00													
u	MC - 0.5	19	9.50																	
OdreC	LC25	81	20.25	55	13.75	91	22.75	98	24.50		25	6.25	65	16.25			95	23.75		15
)	Total	100	29.75	100	58.75	92	26.75	98	24.50		25	6.25	92	16.25	0	00:00	95	23.75		15
L	6 - 8																			
	7 - 7.9									7.5										
	6 - 6.9																		\neg	
	5 - 5.9																			
ų	4 - 4.9									4.5										
sina	3 - 3.9																			
εV	2 - 2.9																			
	1 - 1.9									1.5										
······································	>0 - 0.9																			
	Clean		0		0	5	0	2	0	Clean	15	0	35	0	100	0		0		
	Total	0	00.0	0	00:0	2	00:0	2	0.00		75	0.00	35	0.00	100	00.00	0	00'0		0
Ra	Rating	29	29.75	35	58.75	26	26.75	24	24.50		9	6.25	16	16.25	0.	00.0	23.	23.75		3.75
Ľ	Location Factor	- 1	2		3		1		3		. ,	20	۲,	20	9	60	0.	0.5		
lud	Industry Rating	29	59.50	17.	176.25	26	26.75	73	73.50		12	125.00	32	325.00	0.	0.00	11.	11.88		3.75
	WDP	<u>ـ</u>				TGC				TLC			Unweigh	Unweighted Deposits	sits		T.L.	Flaked (O	T.L. Flaked Carbon %
	801.8	8				29.75				26.75				189.7				0	Į.	
								1									***************************************		-1	

Mack T-12 **EGR Engine Oil Test** Main Bearing Weight Loss Form 21

EOT Time: Laboratory: EOT Date: 20141010 SR 06:12 Oil Code: Test Number: 83-108-2M7188-1208 LO292039 Formulation / Stand Code:

Position #	Location	SOT Weight, g	EOT Weight, g	Weight Change, mg
1	Upper	148.0544	148.0301	24.3
2	Upper	172.1671	172.1278	39.3
3	Upper	172.2493	172.2280	21.3
4	Upper	244.1042	244.0833	20.9
5	Upper	172.2381	172.1984	39.7
6	Upper	172.1817	172.1390	42.7
7	31.2			
Upper Bearing A	Average Weight	Loss, mg		31.3
Upper Bearing \	Weight Loss Std	. Dev., mg		9.3
Upper Bearing I	Minimum Weigh	t Loss, mg		20.9
Upper Bearing I	Maximum Weigh	t Loss, mg		42.7

Position #	Location	SOT Weight, g	EOT Weight, g	Weight Change, mg
1	Lower	188.1950	188.1743	20.7
2	Lower	187.8870	187.8442	42.8
3	Lower	187.9981	187.9550	43.1
4	Lower	283.2072	283.1793	27.9
5	Lower	188.0454	187.9910	54.4
6	Lower	188.0280	187.9528	75.2
7	20.2			
Lower Bearing	Average Weight	Loss, mg		40.6
Lower Bearing	Weight Loss Std	. Dev., mg		19.9
Lower Bearing I	Minimum Weigh	t Loss, mg		20.2
Lower Bearing I	Maximum Weigh	it Loss, mg		75.2

Main Bearing Batch ID	180919-O

Ring Gap Measurements Form 22

Laboratory:	SR	EOT Date:	20141010	EOT Time:	06:12
Test Number:	83-108-2	2M7188-1208	Oil Code:	LO2920	39
Formulation / Star	nd Code:				

	T	op Ring Gap. mm	
Cylinder No.	SOT	EOT	Delta (EOT - SOT)
1	0.610	0.610	0.000
2	0.686	0.711	0.025
3	0.610	0.610	0.000
4	0.610	0.635	0.025
5	0.610	0.635	0.025
6	0.610	0.610	0.000
Average			0.013

	2	nd Ring Gap. mm	
Cylinder No.	SOT	EOT	Delta (EOT - SOT)
1	0.508	0.533	0.025
2	0.432	0.432	0.000
3	0.432	0.457	0.025
4	0.406	0.432	0.026
5	0.432	0.432	0.000
6	0.457	0.457	0.000
Average			0.013

	(Oil Ring Gap. mm	
Cylinder No.	SOT	EOT	Delta (EOT - SOT)
1	0.533	0.584	0.051
2	0.559	0.610	0.051
3	0.559	0.584	0.025
4	0.508	0.533	0.025
5	0.508	0.533	0.025
6	0.483	0.533	0.050
Average			0.038

Mack T-12

EGR Engine Oil Test T-10 Merits Calculated with T-12 Results Form 23

Laboratory:	SR	EOT Date:	20141010	EOT Time:	06:12
Test Number:	83-108-2	M7188-1208	Oil Code:	LO2920	39
Formulation / Star	nd Code:				

	Delta Pb @ EOT (ppm)	Avg. Liner Wear (µm)	Avg, Top Ring Weight Loss (mg)	Oil Consumption (g/h)	Delta Pb 250-300h (ppm)
T-12 Final Original Unit Result	20	25.4	45	64.4	7
T-10 Mack Merits A	320.0	50.0	400.0	232.5	292.3
Total T-10 Mack Merits A			1294.8		

A Non-reference Tests only.

Version 20100308

Title / Validity Declaration Page

Form 1

Conducted for

SOUTHWEST RESEARCH INSTITUTE

	V	with t I = Invalid Accor N = Results Perfor	he Test ; The F dance v canr mance	Procedure. Reference Oil with the Test not be Int (Non-Referer	/Non-Reference t Procedure. erpreted as	ce Oil was no Representat		
	NR	NR = Non F						
Stand:	94	Stand Run N	lo.:	7	Engine No.:	2M6349	Engine Hours:	1300
End of	Test Date:	2014	1010		End of Test T	ime:	03:48	
Oil Cod	e / CMIR: ^A		LO30	6520				
Formula	ation / Stand (Code: ^B						
Altcode	•1: ^C		Altcoc	le2:		Altcode3	: ^C	
D7422			– nents t	hrough the i			nce with the Test N ne remarks included	
_	r Non-Reference (
C	gistered Tests Or							
vvnen P	rovided or Require	ей ву Спепт		Submitted by		Testing Full N	gnature	
R						Тур	V. Warden red Name n Engineer	
		7 ®					Title	

Table of Contents

 Laboratory:
 SR
 EOT Date:
 20141010
 EOT Time:
 03:48

 Test Number:
 94-7-2M6349-1300
 Oil Code:
 LO306520

 Formulation / Stand Code:

		TMC Form Number
1.	Title / Validity Declaration Page	1
II.	Table of Contents	2
III.	Summary of Test Method	3
IV.	Test Results Summary	4
٧.	Operational Summary	5
VI.	Rod Bearing Weight Loss	6
VII.	Ring Weight Loss	7
VIII.	Oil Analysis Summary	8
IX.	Liner Surface Roughness & Bore Diameter	9
Χ.	Liner Wear Summary	10
XI.	Unscheduled Downtime & Maintenance Summary	11
XII.	Test Fuel Analysis (Last Batch)	12
XIII.	Characteristics of the Data Acquisition System	13
XIV.	Build-up and Hardware Information	14
XV.	Rating Summary: Piston #1	15
XVI.	Rating Summary: Piston #2	16
XVII.	Rating Summary: Piston #3	17
XVIII.	Rating Summary: Piston #4	18
XIX.	Rating Summary: Piston #5	19
XX.	Rating Summary: Piston #6	20
XXI.	Main Bearing Weight Loss	21
XXII.	Ring Gap Measurements	22
XXIII.	T10 Merits Calculated with T-12 Results	23
XXIV.	ACC Test Laboratory Conformance Statement ^A	24
XXV.	ACC Engine Test Registration Form	

A ACC-Registered Tests Only

The results of this report relate only to the items tested.

This report shall not be reproduced, except in full, without the written approval of Southwest Research Institute®.

Summary of Test Method

Laboratory:	SR	EOT Date:	20141010	EOT Time:	03:48
Test Number:	94-7-2N	16349-1300	Oil Code: LO306520		
Formulation / Star	nd Code:				

The Mack T-12 EGR Engine Oil Test is a fuel engine-dynamometer test which evaluates the ability of a lubricant to minimize piston ring wear, cylinder liner wear, and lead corrosion, oil consumption, and oxidation. This test is a two-phase, steady state test (constant speed and load), run with heavy EGR. The first phase is 100 hours and is run with retarded fuel injection timing to produce elevated soot levels in the oil. The second phase is 200 hours and is run under heavy load conditions to induce piston ring and cylinder liner wear.

The test engine is a Mack E-TECH V-MAC III diesel engine with EGR. It is an in-line six cylinder, four-stroke, turbocharged engine. It has electronically controlled fuel injection with six individual electronic unit pumps. A one hour break-in is conducted prior to each test since a new engine build is used for each test.

Mack T-12 Test Conditions

muon	1-12 Test Conditions	
Parameter	Phase I	Phase II
Time, h	100	200
Injection Timing, °BTDC	Variable	21
Speed, r/min	1800	1200
Fuel Flow, kg/h	59.2	63.5
Intake CO2, %	3.09	1.42
Exhaust CO2, %	9.25	9.78-10.08 typical
Inlet Manifold Temp., °C	90	80
Coolant Out Temp., °C	66	108
Fuel In Temp., °C	40	40
Oil Gallery Temp., °C	88	116
Intake Air Temp., °C	25	25
Intake Air Restriction, kPa	3.5 - 4.0	3.5 - 4.0
Inlet Manifold Pressure, kPa	265 Nominal	302-312
Exhaust Back Pressure, kPa	2.7 - 3.5	2.7 - 3.5
Crankcase Pressure, kPa	0.25 - 0.75	0.25 - 0.75
Power, kW	Record	Record
Torque, Nm	Record	Record
Pre-Turbine Exhaust Temp., °C	Record	Record
Tailpipe Exhaust Temp., °C	Record	Record
Oil Sump Temp., °C	Record	Record
EGR Pre-Venturi Temp., °C	Record	Record
Inlet Air Dew Point, °C	Record	Record
Inlet Air Humidity, kg/kg	Record	Record
Main Gallery Oil Pressure, kPa	Record	Record
Oil Filter Delta P, kPa	Not to exceed 138	Not to exceed 138

Test Results Summary

		Test Re	sults		
Date Test Started:	20140926	Start Time:	15:27	Test Length:	300
TMC Oil Code: A		Laboratory Oil Code:	LO-306520	SAE Viscosity:	N/A
Average TGA Soot % at 100 h		4.0			
Centrifugal Oil Filter Mass Gain, g		240.4			
Oil Filter Delta P, kPa (138 maximum)		4			
EOT TBN			2.7		

1201 121					
	Delta Pb @ EOT (ppm)	Avg. Liner Wear (μm)	Avg. Top Ring Weight Loss (mg)	Oil Consumption (g/h)	Delta Pb 250-300h (ppm)
Original Result	90	57.4	116	119.6	34
Transformed Result ^B	4.4998	57.4000	116.0000	4.7842	3.5264
Correction Factor B	0.8130	0.8180	0.7190	0.9130	0.7100
Corrected Transformed Result B	3.6583	46.9532	83.4040	4.3680	2.5037
Severity Adjustment ^B	0.0000	1.1294	0.0000	-0.0496	0.0000
Final Transformed Result B	3.6583	48.0826	83.4040	4.3184	2.5037
Final Original Unit Result	39	48.1	83	75.1	12
Mack Merits ^C	-80.0	-1506.2	125.7	74.3	120.0
Total Mack Merits: C			-1266.2		

	Last S	Stand Reference Results			
Test Number:	94-1-	1MKSLA-0			
Oil Code:	CMIR-9	8461 SR-109			
Test Length:	300 TMC Oil Code: ^A 821-3				
EOT Date:	20140224	20140224 EOT Time: 07:52			
Number of Tests Sind	ce Stand Calibration: D		5		
Stand Calibration Expiration Date:		20141224			
Average TGA Soot %	6 at 100 h:	4.1			
· ·					

	Delta Pb @ EOT (ppm)	Avg. Liner Wear (μm)	Avg. Top Ring Weight Loss (mg)	Oil Consumption (g/h)	Delta Pb 250-300h (ppm)
Final Original Unit Result	22	13.1	82	59.0	9

A Reference Tests Only

B Transformed Units apply to Delta Pb, @ EOT, Oil Consumption, and Delta 250-300 h only.

C Non-Reference Tests Only

D Operationally valid tests only, including current test.

Mack T-12

EGR Engine Oil Test

Operational Summary Form 5

		Laboratory:	.;	SR	E0.	EOT Date:	20141010	010	EOT Time:	03	03:48	
		Test Number:	oer:	94-7	94-7-2M6349-1300	00	Oil Code:	:	Γ	LO306520		
		Formulation / Stand Code:	on / Stan	d Code:								
	Parameter	er	Units	OJ Threshold	EOT QI	Target	get	Ave	Average	Samples ^B	$BQD^{\mathcal{C}}$	Over/Under Range ^D
	Speed		r/min	0.000	0.988	1800	1200	1800	1200	3000	0	0
	Fuel Flow		kg/h	0.000	0.994	59.2	63.5	59.18	63.50	3000	0	0
	Inlet Manifold Temp.	emp.	၁့	0.000	0.767	06	80	06	80	3000	0	0
,-,	Coolant Out Te	mp.	၁့	0.000	0.937	99	108	99	108	3000	0	0
	Fuel In Temp.		၁့	0.000	0.328	4	40	4	40	3000	0	0
u	Oil Gallery Tem	p.	၁့	0.000	0.791	88	116	88	116	3000	0	0
1	Intake Air Tem	0.	ပ	0.000	0.774	2	25	7	25	3000	0	0
	Inlet Air Restric	tion	kPa			3.5	- 4.0	3.	3.73	3000	0	0
	o Inlet Man. Pressure	sure	kPa			265 Nominal	307±5	266	306	3000	0	0
	Exh. Back Pressure	sure	kPa			2.7	2.7 - 3.5	3	3.1	3000	0	0
	Crankcase Pressure	sure	kPa			0.25	0.25 - 0.75	0.	0.56	3000	0	0
	Intake CO2		%			$3.09 \pm .05$	$1.42 \pm .05$	3.07	1.40			
	Exhaust CO2		%			$9.25 \pm .15$	9.93±.15	9.15	10.07			
<u> </u>	Parameter	ter	Units	Typical Values	Values ^E		Ā	Average				
	Torque		Nm	1232-1397	2434-2543		1349		2505			
		Fuel Cons.	g/kW-h	212-263	179-228	2	232.7		201.7			
	Pre-Turbine Temp. (L)	mp. (L)	၁့	482-605	504-759		539		650			
	Pre-Turbine Temp. (R)	mp. (R)	၁。	503-567	491-758		532		623			
. 1	Tailpipe Temp.		၁。	303-354	280-433		324		399			
	Oil Sump Temp).	၁၀	92-105	73-190		98		129			
	EGR Pre-Venturi Temp.	ri Temp.	၁	138-201	107-126		163		121			
	Blowby		L/min	41-176	71-264		73.6		158.6			
	Z Inlet Air Dew Point	oint	၁့	6-22	6-22		22		21			
	EGR Pre-Venturi Pressure	ri Pressure	kPa	226-331	235-336		91		155			
	Main Gallery Oil Pressure	il Pressure	kPa	394-502	165-269		357		161			
`	A Of values above the threshold are acceptable by the Mack Surveillance Panel	throchold or	accountsh	to by the Mack	Surveillance Pa		holow the thr	ton vem blotse	he considered ac	Of values helow the threshold may not be considered acceptable based on an engineering	an engineering	

A OI values above the threshold are acceptable by the Mack Surveillance Panel. OI values below the threshold may not be considered acceptable based on an engineering review. Refer to Annex A5.

B Total number of data points taken. Minimum acceptable value is 3000. C Number of Bad Quality Data points not used in the calculation of the statistical measures.

Mack T-12 EGR Engine Oil Test Rod Bearing Weight Loss Form 6

Cylinder #	Location	SOT Weight, g	EOT Weight, g	Weight Change, mg
1	Upper	98.6590	97.8700	789.0
2	Upper	98.2926	97.0206	1272.0
3	Upper	98.5436	98.2064	337.2
4	Upper	98.4494	98.1388	310.6
5	Upper	98.6256	97.7659	859.7
6	Upper	98.4306	97.6636	767.0

Summary	As Measured	Outlier Screened
Upper Bearing Average Weight Loss, mg	722.6	722.6
Upper Bearing Weight Loss Std. Dev., mg	359.2	359.2
Upper Bearing Minimum Weight Loss, mg	310.6	310.6
Upper Bearing Maximum Weight Loss, mg	1272.0	1272.0
A Outlier Upper Rod Bearing	N	

A Cylinder number

Cylinder #	Location	SOT Weight, g	EOT Weight, g	Weight Change, mg
1	Lower	98.0288	97.9787	50.1
2	Lower	97.9326	97.8421	90.5
3	Lower	98.0906	98.0807	9.9
4	4.5			
5	47.0			
6	37.7			
Lower Bearing	39.9			
Lower Bearing	31.2			
Lower Bearing	4.5			
Lower Bearing	Maximum Weigh	nt Loss, mg		90.5

Conrod Bearing Batch ID	X

Mack T-12 EGR Engine Oil Test Ring Weight Loss Form 7

Cylinder No.	Top Ring SOT Weight, g	Top Ring EOT Weight, g	Weight Loss, mg
1	31.3402	31.1718	168.4
2	31.3424	31.1585	183.9
3	31.3493	31.2635	85.8
4	31.3669	31.2479	119.0
5	31.2336	31.1523	81.3
6	31.3403	31.2848	55.5

Summary	As Measured A	Outlier Screened
Top Ring Average Weight Loss, mg	116	116
Top Ring Weight Loss Std. Dev., mg	51.3	51.3
Top Ring Minimum Weight Loss, mg	55.5	55.5
Top Ring Maximum Weight Loss, mg	183.9	183.9
Outlier Ring B	N	

A Results calculated without rings with plasma flaking.

^B Ring number wear results are not currently outlier screened.

Cylinder No.	2nd Ring SOT Weight, g	2nd Ring EOT Weight, g	Weight Loss, mg
1	27.2143	27.1753	39.0
2	27.1651	27.1359	29.2
3	27.2745	27.2473	27.2
4	27.1733	27.1451	28.2
5	27.2960	27.2561	39.9
6	27.3570	27.3300	27.0
		2nd Ring Average Weight Loss, mg	31.8
		2nd Ring Weight Loss Std. Dev.,mg	6.0
		2nd Ring Min. Weight Loss, mg	27.0
		2nd Ring Max. Weight Loss, mg	39.9

Cylinder No.	Oil Ring SOT Weight, g	Oil Ring EOT Weight, g	Weight Loss, mg
1	37.0838	37.0511	32.7
2	36.3725	36.3452	27.3
3	36.8838	36.8574	26.4
4	36.8456	36.8159	29.7
5	36.8308	36.7999	30.9
6	36.5229	36.4957	27.2
		Oil Ring Average Weight Loss, mg	29.0
		Oil Ring Weight Loss Std. Dev.,mg	2.5
		Oil Ring Min. Weight Loss, mg	26.4
		Oil Ring Max Weight Loss mg	32.7

Mack T-12 EGR Engine Oil Test Oil Analysis Summary Form 8

03:48 LO306520 EOT Time: 20141010 Oil Code: EOT Date: 94-7-2M6349-1300 Test Number: Laboratory:

ä
ŏ
ŏ
ပ
7
ĕ
ਰ
ぶ
0,
_
Ξ
.0
at
=======================================
=
Ξ
ō
ŭ.

							_								
Ë	⊽	~	က	က	4			9	9	9	7		8	8	13
Na	21	25	28	29	30			32	38	38	43		45	44	46
Sn	₹	Ψ-	-	2	2			4	5	5	9		6	6	=
is	5	11	14	16	19			23	26	28	31		36	34	44
A	4	4	4	4	4			4	5	2	5		9	9	9
Cr	<1	~ 1	2	2	4			5	7	7	8		6	6	13
Cu	۲	5	7	6	11			20	43	34	40		51	52	62
Pb	۲>	3	4	4	4			9	8	5	19		25	65	91
Fe	2	18	33	47	69			146	207	240	306		434	452	260
Peak Height	0.0	0.5	3.2	5.4	7.2			10.8	14.8	17.6	19.4		24.2	26.4	32.4
Integrated	0.0	-210.9	-249.7	-290.6	-367.9			-421.3	-561.3	-569.5	-653.5		-569.1	-526.8	-381.7
TAN	2.9	3.4	3.2	3.3	3.0			3.2	3.4	3.3	3.8		4.2	4.5	5.0
TBN	10.3	9.7	9.4	8.4	7.9			0.9	4.6	4.2	3.5		3.2	3.2	2.7
Increase cSt		0.76	1.05	1.57	2.07			1.92	2.30	2.73	3.28		4.21	4.55	5.53
at 100°C cSt	8.92	9.68	9.97	10.49	10.99			10.84	11.22	11.65	12.20		13.13	13.47	14.45
Wt. % TGA	0.2	6.0	1.6	2.7	4.0	4.0	4.0	4.3	4.7	4.9	5.1		5.5	5.5	6.0
Hours	000	025	020	075	100	100 (2nd)	100 Avg.	125	150	175	200		250	275	300
	Wt. % at 100°C Increase TBN TAN Integrated Height Fe Pb Cu Cr Al Si Sn Na TGA cSt cSt	Wt. % at 100 °C Increase TAN Integrated Peak Fe Pb Cu Cr Al Si Sn Na TGA cSt cSt	Wt. % at 100 °C Increase TAN Integrated Peak Fe Pb Cu Cr Al Si Sn Na Na TGA cSt cSt cSt cSt cSt contract (state) contract (state)	Wt. % at 100 °C Increase TAN Integrated Peak Height Fe Pb Cu Cr Al Si Sn Na 7GA cSt cSt	Wt. % at 100 °C Increase Cst Increase Cst Cst TAN Integrated TBN Increase Cst Cst Increase Increase Cst Cst Cst Cst Cst Cst Cst Cst Cst Cst	Wt. % at 100 °C Increase TSN TGA TAN Integrated TGA Integrated Increase	Wt. % at 100 °C cSt cSt cSt TAN Integrated TGA Feat Height Leght	Wt. % at 100°C Locrease CSt CSt CSt CST CST CST CST CST CST CST CST CST CST	Wt. % at 100 °C C st cSt cst Cst cst TAN Integrated Height Legist Peak Height Legist Fe cst cst cst cst cst cst cst cst cst cst	Wt. % at 100 °C Increase	Wt. % at 100°C Increase CSt rost of cSt TAN Integrated Light Height Height Height Fe Diagram Fig. Fe Diagram Fig. Cr Image of Color CST of CST	Wt. % of cst cst TBN Integrated Light Feak Height Fe Pb Cu Cr Al Si Si Si Al Si Si Cr Al Cr Al Si Si	Wt. % of cst cst cst cst TAN Integrated Light Peak Light Fe cst cst cst cst cst cst cst cst cst cst	Wt. % at 100 °C cst TAN case TEAN case TEAN case cast cases TEAN case cast cases TEAN case cases Fe case cases Cu cases	WH. % at 100 °C Increase cst TAN Integrated Light Peak Height Fe Pb Cr AI Cr AI Si Sn Na 102 cst cst cst 10.3 2.9 0.0 0.0 2 c1 c2 c2 c1 c1

Summary	As Measured	Outlier Bearing	
Delta Pb @ EOT, ppm	06	06	
Delta Pb 250-300 h, ppm	34		<u> </u>
MRV Yield Stress, Pa	0		2

MRV @ 100h, cP	1800
MRV @ 100h with Severity Adjustment, cP	3068

Mack T-12

EGR Engine Oil Test Liner Surface Roughness & Bore Diameter

Form 9

Laboratory:	SR	EOT Date:	20141010	EOT Time:	03:48
Test Number:	94-7-2N	л6349-1300	Oil Code:	LO3065	520
Formulation / Stan	d Code:				

Liner No.	Location	Ra (<i>µ</i> m)	Bore Diameter (mm)		Ra (μm)	Dia. (mm)
	Top Ring Travel @ 0°	17.80	123.848	Avg	18.02	123.850
1	Top Ring Travel @ 90°	18.20	123.853	Std Dev	0.17	141
•	Top Ring Travel @ 180°	18.00		Min	17.80	
	Top Ring Travel @ 270°	18.10		Max	18.20	
	Top Ring Travel @ 0°	17.70	123.858	Avg	17.60	123.865
	Top Ring Travel @ 90°	18.20	123.873	Std Dev	0.70	
2	Top Ring Travel @ 180°	17.90		Min	16.60	
	Top Ring Travel @ 270°	16.60		Max	18.20	1
	Top Ring Travel @ 0°	17.10	123.855	Avg	16.85	123.867
	Top Ring Travel @ 90°	16.30	123.878	Std Dev	0.49	
3	Top Ring Travel @ 180°	16.60		Min	16.30	
	Top Ring Travel @ 270°	17.40		Max	17.40	
	Top Ring Travel @ 0°	17.10	123.866	Avg	17.02	123.876
_	Top Ring Travel @ 90°	16.80	123.886	Std Dev	0.22	_
4	Top Ring Travel @ 180°	17.30		Min	16.80	
	Top Ring Travel @ 270°	16.90		Max	17.30	
	Top Ring Travel @ 0°	16.40	123.866	Avg	17.45	123.876
_	Top Ring Travel @ 90°	18.50	123.886	Std Dev	1.16	
5	Top Ring Travel @ 180°	18.40		Min	16.40	
	Top Ring Travel @ 270°	16.50		Max	18.50	
	Top Ring Travel @ 0°	16.70	123.863	Avg	17.00	123.874
	Top Ring Travel @ 90°	17.40	123.886	Std Dev	0.41	
6	Top Ring Travel @ 180°	17.30		Min	16.60	
	Top Ring Travel @ 270°	16.60		Max	17.40	

	Ra (<i>µ</i> m)	Bore Diameter (mm)
Average Surface Roughness & Bore Diameter	17.32	123.868
Standard Deviation Surface Roughness & Bore Diameter	0.45	0.010
Minimum Surface Roughness & Bore Diameter	16.85	123.850
Maximum Surface Roughness & Bore Diameter	18.02	123.876

Liner Wear Summary

EOT Time: Laboratory: **EOT Date:** 03:48 20141010 SR Oil Code: Test Number: LO306520 94-7-2M6349-1300 Formulation / Stand Code:

			Wear St	tep (<i>µ</i> m)		
Γ			Cylinder	Number		
Position	1	2	3	4	5	6
1:00	57.1	53.4	64.0	83.8	108.3	86.5
2:00	68.9	39.0	67.2	84.2	117.4	75.9
3:00 (Thrust)	78.4	33.9	55.7	71.5	125.0	86.2
4:00	40.1	44.7	47.5	75.3	92.2	79.8
5:00	27.3	40.2	58.1	49.1	67.5	68.2
6:00 (Rear)	24.1	30.7	55.0	24.2	56.0	36.9
7:00	25.3	25.7	54.5	29.5	61.3	40.7
8:00	63.0	28.1	57.7	49.8	79.3	40.8
9:00 (Anti-Thrust)	75.9	24.1	69.2	53.0	79.7	50.9
10:00	68.3	20.2	69.0	49.3	92.8	54.6
11:00	38.4	22.3	57.8	32.1	82.8	54.1
12:00 (Front)	60.7	27.5	50.8	34.0	86.2	51.5
Average	52.3	32.5	58.9	53.0	87.4	60.5

Summary	As Measured	Outlier Screened	
Average, μm	57.4	57.4	
Std. Dev., μ m	17.8	17.8	
Minimum, µm	32.5	32.5	
Maximum, μm	87.4	87.4	
Outlier Liners A	N		

A Cylinder Number

Mack T-12

EGR Engine Oil Test Unscheduled Downtime & Maintenance Summary

Form 11

Laboratory:	SR	EOT Date:	20141010	EOT Time:	03:48
Test Number:	94-7-2M634	9-1300	Oil Code:	LO306	520
Formulation / Star	nd Code:				

Test	Date	Downtime	Reasons
Hours	Date	Downtime	neasuris
10:00	20140927	1:52	Repaired coolant leak at EGR hose: Restart
31:30	20140928	0:16	Tripped T-Safety: Restart
38:00	20140928	7:39	Repaired coolant leak at oil cooler: Restart
75:00	20140930	2:33	Repaired fuel injector leak: Restart
124:05	20141002	1:17	Tower water maintenance: Restart
131:52	20141002	0:16	Repaired fuel leak at fuel rail line: Restart
285:47	20141009	10:19	Repaired turbo leak: Restart
31:30	20140928	0:16	TSAFETY was 0.3 min = 0.5
38:00	20140928	7:39	Stop button pressed.
75:00	20140930	2:33	Stop button pressed.
124:05	20141002	1:17	Stop button pressed.
131:52	20141002	0:16	Stop button pressed.
285:47	20141009	10:19	Stop button pressed.
Total Do	owntime	024:12	

Other Comments **Number of Comment Lines:** Engine to idle for samples due to safety.

Mack T-12 EGR Engine Oil Test Test Fuel Analysis (Last Batch)

Form 12 EOT Date: 20141010 EOT Time: 03:48

Test Number: 94-7-2M6349-1300 **Oil Code:** LO306520

Formulation / Stand Code:

SR

Laboratory:

Supplier: PHILLIPS Batch Identifiers: 14DPP1001

Measurement	Specifications	Ana	lysis	Test Method
		New	EOT	
Total Sulfur, ppm	7 -15	11.90	9.20	D 5453
Gravity, °API	34 - 37	37.7	36.4	D 4052
Hydrocarbon Composition				
Aromatics % wt.	26 - 31.5	3.	1.5	D 5186
Olefin % Vol.	Report	4	.3	D 1319
Cetane Index	Report	4(6.2	D 976
Cetane No.	43 - 47	4:	5.0	D 613
Copper Strip Corrosion	1 Maximum		1	D 130
Flash Point, °C	54 Minimum	6	69	D 93
Pour Point, °C	-18 Maximum	••	40	D 97
Carbon Residue on 10% Residuum, %	0.35 Maximum	0.	.10	D 524 (10% Bottoms)
Water & Sediment, % Vol	0.05 Maximum	0.	.00	D 2709
Viscosity, cSt @ 40°C	2.0 - 2.6	2	2.3	D 445
Total Acid Number	0.05 Maximum	0	.01	D 664-1
Strong Acid Number	0.00 Maximum	0	.00	D 664-1
Accelerated Stability	1.5 max	C).2	D 2274
Ash, % Wt.	0.005 max	0.	000	D 482
SLBOCLE, g	3100 min ^A			D 6078 ^A
90% Distillation, °C	293 - 332	2	99	D 86

 $^{^{\}mathcal{A}}$ May be altered to be consistent with CARB or ASTM diesel fuel specifications.

Characteristics of the Data Acquisition System

 Laboratory:
 SR
 EOT Date:
 20141010
 EOT Time:
 03:48

 Test Number:
 94-7-2M6349-1300
 Oil Code:
 LO306520

 Formulation / Stand Code:

Parameter (1)	Sensing Device (2)	Calibration Frequency (3)	Record Device (4)	Observation Frequency (5)	Record Frequency (6)	Log Frequency (7)	System Response (8)
Temperatures							
Oil @ Filt.	T/C	Reference	C/D	0	0	1/6 min.	3.0s
Fuel In.	T/C	Reference	C/D	0	0	1/6 min.	3.0s
Intake Air	T/C	Reference	C/D	0	0	1/6 min.	3.0s
Intake Man.	T/C	Reference	C/D	0	0	1/6 min.	3.0s
Pre-Turb.	T/C	Reference	C/D	0	0	1/6 min.	3.0s
Cool. Out	T/C	Reference	C/D	0	0	1/6 min.	3.0s
Other							
Fuel Flow	Mass Flow	Reference	C/D	0	0	1/6 min.	36.1s
Engine RPM	Magnetic	Reference	C/D	0	0	1/6 min.	2.0s
Load	StrainGage	Reference	C/D	0	0	1/6 min.	0.5s
Inlet Restr.	Transducer	Reference	C/D	0	0	1/6 min.	3.0s
Exh. Press.	Transducer	Reference	C/D	0	0	1/6 min.	3.0s
Oil Gal. Press.	Transducer	Reference	C/D	0	0	1/6 min.	3.0s

Legend:

- (1) Operating Parameter
- (2) The Type of Device Used to Measure Temperature, Pressure or Flow
- (3) Frequency at Which the Measurement System is Calibrated
- (4) The Type of Device Where Data is Recorded
 - LG Handlog Sheet
 - DL Automatic Data Logger
 - SC Strip Chart Recorder
 - C/M Computer, Using Manual Data Entry
 - C/D Computer, Using Direct I/O Entry
- (5) Data is Observed but Only if Recorded Off Spec.
- (6) Data are Recorded but are not Retained at EOT
- (7) Data is Logged as Permanent Record, Note Specify if:
 - SS Snapshot Taken at Specified Frequency
 - AG/X Average of X Data Points at Specified Frequency
- (8) Time for the Output of Reach 63.2% of Final Valve for Step Change at Input

Build-up and Hardware Information

Inject	ion Timing
Timing Hours	Timing (Deg)
0	10.80
22	10.20
44	9.30
55	7.50
63	6.60
99	6.90
5	Total Timing Changes

	Hardware	
Part	Part Number	Serial Number
Primary Turbo Charger	631GC5176M7	
Secondary Charger	3801647RX	
Cylinder Head (front)	732GB3499M	Head Set C-015
Cylinder Head (rear)	732GB3499M	Head Set C-015
Pistons	5125M	
Injection Nozzles	736GB419M3	
Rod Bearings	M1062GBT100	
Liners	509GC471	
Ring Set	353GC2141	

Cylinder Kit Location	CPD ID Number
Cylinder 1	180901-VUXO
Cylinder 2	180902-VUXO
Cylinder 3	180903-VUXO
Cylinder 4	180904-VUXO
Cylinder 5	180905-VUXO
Cylinder 6	180906-VUXO

Rating Summary: Piston No. 1 Form 15

03:48 LO306520 Verified By: EOT Time: 20141010 Oil Code: Rater Initials: EOT Date: 94-7-2M6349-1300 SR Formulation / Stand Code: Test Number: Laboratory: Date Rated:

To	Total Piston Ratings Summary	Summary																		
<u> </u>			Grooves	ves			Lands	ls l			Gro	Groove		Lands	sp		المقامين ان	ling	Under	ē
	Den	No.	۲.	No.	2	No.	-	No. 2	2	Dep.	No	No. 3	No.	. 3	No. 4	4	200	- filling	Crown	wn
	Factor	A,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.	Factor	A,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.	A ,%	Dem.
	HC - 1.0			9	90.9	3	3.00	15	15.00											
	MC - 0.5	2	1.00																	
stpoi	LC25	98	24.50	94	23.50	85	21.25	82	20.50				83	20.75			95	23.75	06	22.50
D-3	Total	100	25.50	100	29.50	88	24.25	97	35.50		0	00.00	83	20.75	0	0.00	95	23.75	90	22.50
9																				
	8 - 9																			
	7 - 7.9									7.5										
	6 - 6.9																			
	5 - 5.9																			
ч	4 - 4.9									4.5										
sinı	3 - 3.9																			
κV	2 - 2.9																			
	1 - 1.9									1.5						• • • • • • • • • • • • • • • • • • • •				
	9.0 - 0<																			
	Clean		0		0	12	0	3	0	Clean	100	0	17	0	100	0		0		0
	Total	0	0.00	0	0.00	12	0.00	3	0.00		100	0.00	17	0.00	100	0.00	0	0.00	0	0.00
Rŝ	Rating	25	25.50	29.50	50	24.25	25	35.50	50		О.	0.00	20	20.75	0.00	0	23.75	75	22.50	50
٢	Location Factor	,	2	3	_	-		3			N	20	2	20	09		0.5	2		
Ĕ	Industry Rating	51	51.00	88.50	50	24.25	25	106.50	50		0.	0.00	415	415.00	00.00		11.88	88	22.50	20
L,	WDP	4				TGC				TLC		1	Jnweight	Unweighted Deposits	its		T.L. I	T.L. Flaked Carbon %	ırbon %	
<u> </u>	719.7	7			7	25.50				24.25				181.7				0		
ل						Vision (Vision)		1		Bearing and a second	•									

D-39 Page 15 of 23

03:48 LO306520 Verified By: **EOT Time:** Rating Summary: Piston No. 2 Form 16 20141010 Oil Code: Rater Initials: EOT Date: 94-7-2M6349-1300 Formulation / Stand Code: Test Number: Laboratory: Date Rated:

70	Total Piston Ratings Summary	Summary																		
L			Gro	Grooves			Lands	sp			Gro	Groove		Lands	ds		ومتاممي انن		Under	
	Den	No.	.1	No.	. 2	No.	.1	No.	2	Dep.	No	No. 3	No.	3	No. 4	4	5	Ē.	Crown	2
	Factor	A,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.	Factor	A,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.
	HC - 1.0			2	2.00	3	3.00	4	4.00			:	3	3.00						
	MC - 0.5	3	1.50																	
stpoi	LC25	97	24.25	98	24.50	89	22.25	87	21.75				83	20.75			95	23.75	100	25.00
D-4	Total	100	25.75	100	26.50	92	25.25	91	25.75		0	0.00	98	23.75	0	0.00	95	23.75	100	25.00
W																				
	6 - 8																			
	7 - 7.9									7,5										
	6 - 6.9																			
	5 - 5.9																			
ų	4 - 4.9									4.5							•			
lainy	10 3 - 3.9																			
۴Λ	2 - 2.9																•			
	1 - 1.9									1.5										
	6.0 - 0<																			
	Clean		0		0	8	0	9	0	Clean	100	0	14	0	100	0		0		0
	Total	0	0.00	0	00.00	8	0.00	6	0.00		100	0.00	14	0.00	100	00.00	0	0.00	0	0.00
ř	Rating	25	25.75	26	26.50	25	25.25	25.	25.75		0	0.00	23.75	75	0.00	o o	23.75	75	25.00	8
تا	Location Factor		2		3		1	• •	3		. 4	20	20		09		0.5	5	-	
드	Industry Rating	51	51.50	79	79.50	25	25.25	77.	77.25		0	00.0	475.00	8°.	0.00	0	11.88	88	25.00	00
<u> </u>	WDP	Ь				TGC				TLC		ر	Inweight	Unweighted Deposits	its		T.L.	T.L. Flaked Carbon %	urbon %	
<u> </u>	745.3	3				25.75				25.25				175.8				0		

D-40 Page 16 of 23

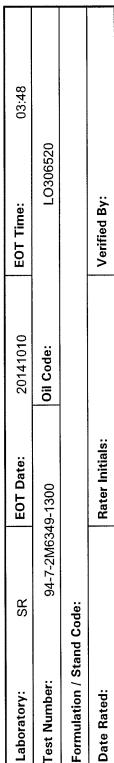
Rating Summary: Piston No. 3 Form 17

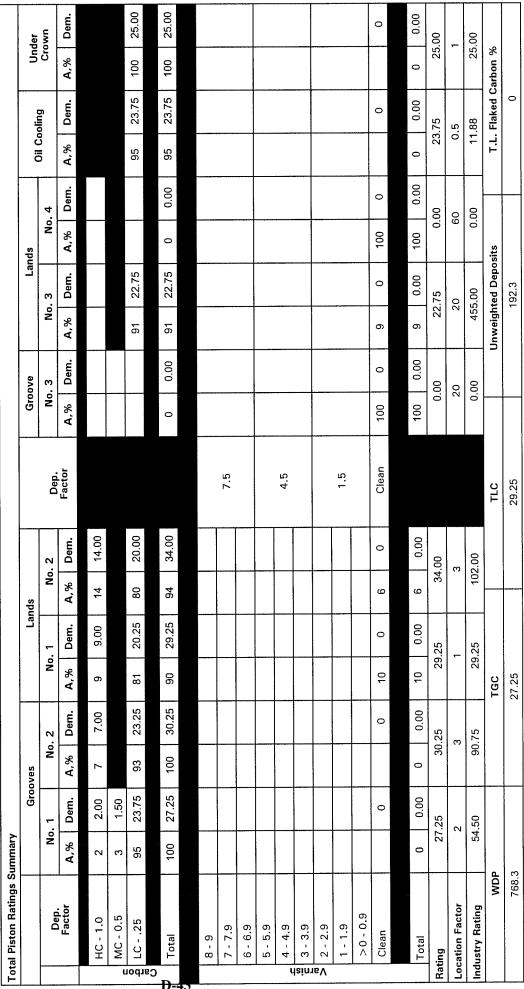
03:48 LO306520 Verified By: EOT Time: 20141010 Oil Code: Rater Initials: EOT Date: 94-7-2M6349-1300 SR Formulation / Stand Code: Test Number: Date Rated: Laboratory:

Ţ,	Total Piston Ratings Summary	ummary																-		
			Grooves	/es			Lands	qs			Gro	Groove		Lands	spe		Oil Cooling		Under	ē
	Den.	No.	1	No.	2	No.	1	No. 2	2	Dep.	No.	.3	No.	. 3	No. 4	4	5	- Simo	Crown	wn
	Factor	A,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.	Factor	A,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.
	HC - 1.0	9	6.00	15	15.00	5	5.00	1	11.00				2	2.00						
	MC - 0.5	14	7.00																	
odie	LC25	80	20.00	85	21.25	84	21.00	83	20.75				83	20.75			95	23.75	100	25.00
_ D	Total	100	33.00	100	36.25	80	26.00	76	31.75		0	000	85	22.75	0	0.00	95	23.75	100	25.00
4	l Otal	001	33.00		20.23	60	70.00	† 50	01:10		o l	00.0	8	24:13	D	200	S	2	20.	20.07
<u> </u>	8 - 9																			
	7 - 7.9									7.5										
	6 - 6.9																			
	5 - 5.9																			
	4 - 4.9									4.5										
lsinı	3 - 3.9																			
εV	2 - 2.9																			
	1 - 1.9									1.5										
	9.0 - 0<																			
	Clean		0		0	11	0	9	0	Clean	100	0	15	0	100	0		0		0
	Total	0	0.00	0	0.00	11	0.00	9	00.00		100	0.00	15	00.0	100	0.00	0	0.00	0	0.00
R	Rating	33.00	00	36.25	5	26.00	8	31.75	75		0.	0.00	22	22.75	0.0	0.00	23.	23.75	25.00	00
Ľ	Location Factor	2		3		_		8			2	20	2	20	9	09	o	0.5		
É	Industry Rating	99.00	00	108.75	.5	26.00	00	95.25	25		0	0.00	45	455.00	00.00	00	7	11.88	25.00	8
	WDP	•			_	твс				TLC		_	Jnweigh	Unweighted Deposits	sits		T.L.	T.L. Flaked Carbon %	ırbon %	
	788.0	0			3	33.00				26.00			`	198.6				0		

Page 17 of 23

Rating Summary: Piston No. 4 Form 18




03:48 LO306520 Verified By: EOT Time: 20141010 Oil Code: Rater Initials: EOT Date: 94-7-2M6349-1300 SR Formulation / Stand Code: Test Number: Laboratory: Date Rated:

10	Total Piston Ratings Summary	ummary																		
			Grooves	ves			Land	sp			Gro	Groove		Lands	spi		Oil Cooling		Under	ā
<u></u>	Den.	No. 1		No.	2	No.	-	No.	2	Dep.	No.	No. 3	No.	. 3	No. 4	4	5	ā.	Crown	٧u
	Factor	A,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.	Factor	A ,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.	A,%	Dem.
	HC - 1.0	2	2.00	***************************************		7	7.00	8	8.00				7	1.00						
ι	MC - 0.5																			
arboi	LC25	98	24.50	100	25.00	88	22.00	98	21.50				86	21.50			95	23.75	100	25.00
:0 — D		700	26 50	100	25.00	20	20.00	9	29 50		c	00.0	87	22 50	c	00 0	<u>و</u> ت	23.75	100	25.00
)-4 _Z	l otal	100	Z6.50	001	75.00	CS.	78.00	94	02.67		0	0.00	96	72.30	0	0.00	CE	67.67	201	73.00
<u> </u>	8 - 9																			
	7 - 7.9									7.5										
	6-6.9																			
	5 - 5.9																			
ι	4 - 4.9									4.5										
lsinı	3 - 3.9																			
εV	2 - 2.9																			
	1 - 1.9									1.5										
	6'0 - 0<																			
	Clean		0		0	5	0	9	0	Clean	100	0	13	0	100	0		0		0
	Total	0	0.00	0	00.00	5	0.00	9	0.00		100	0.00	13	0.00	100	0.00	0	00:0	0	0.00
Ra	Rating	26.50	20	25.00	00	29.	29.00	29.50	50		0.	0.00	22	22.50	0.00	00	23.	23.75	25.00	8
2	Location Factor	2		3		_		3			N	20	2	20	09	0	0.5	5	-	
lυc	Industry Rating	53.00	00	75.00	00	29.00	00	88.50	50		Ö	00.00	45(450.00	00.00	00	=	11.88	25.00	00
L	WDP	٥				TGC				TLC		ſ	Jnweigh	Unweighted Deposits	sits		T.L.	T.L. Flaked Carbon %	ırbon %	
	732.4	ţ				26.50				29.00			`	181.2				0		

Mack T-12 EGR Engine Oil Test Rating Summary: Piston No. 5

ımmary: Pis Form 19

Page 19 of 23

Mack T-12 EGR Engine Oil Test Rating Summary: Piston No. 6 Form 20

			21		
Laboratory:	SR	EOT Date:	20141010	EOT Time:	03:48
Test Number:	94-7-2M6349-1300	19-1300	Oil Code:	LO306520	
Formulation / Stand Code:	nd Code:				
Date Rated:		Rater Initials:		Verified By:	

Total Piston Ratings Summary	Grooves	No. 1	Factor A,% Dem.	10 10.00	2 1.00	88 22.00	100 33.00							>0 - 0.9	0	00.00	33.00	Location Factor 2	Industry Rating 66.00	WDP	789.1
	es	No. 2	A,% Dem.	5 5.00		95 23.75	100 28.75								0	00.0	28.75	3	86.25		
		No.	A,%	6		80	89								11	11	29	,	58	TGC	33.00
	Lands	٠ .	Dem.	9.00		20.00	29.00								0	00'0	29.00	1	29.00		
	qs	No. 2	A,%	18		92	94								9	9	37.00	3	111.00		
			Dem. Factor	18.00		19.00	37.00		7.5		4.5		1.5		0 Clean	0.00	00		00	TLC	29.00
	Ģ	Z	A,%				0								100	100			O		
	Groove	No. 3	Dem.				00.00								0	0.00	0.00	20	0.00		
		No.	A,%	-		88	89				, , , , ,	 			11	11	23.00	20	460.00	Unweighted Deposits	16
	Lands	3	Dem.	1.00		22.00	23.00								0	00.0	00		00	d Deposi	199.6
	8	No. 4	A,% De				0								100	100 0	0.00	09	0.00	ts	
			Dem. A,			6	0.00						· · · · · · · · · · · · · · · · · · ·		0	0.00					
	المناوين ال	l Cooling	A,% Dem.			95 23.75	95 23.75								0	0.00	23.75	0.5	11.88	T.L. Flaked Carbon %	—
	5	Ö	A,%			100	100									0	25		55	Carbon 9	
	Under	Crown	Dem.			25.00	25.00								0	0.00	25.00	_	25.00		

D-44 Page 20 of 23

Mack T-12 EGR Engine Oil Test Main Bearing Weight Loss Form 21

Laboratory: SR		EOT Date:	20141010	EOT Time:	03:48			
Test Number:	94-7-2M6349-1300		Oil Code:	LO3065	520			
Formulation / Stand Code:								

Position #	Location	SOT Weight, g	EOT Weight, g	Weight Change, mg
1	Upper	147.6671		
2	Upper	171.5255		
3 Upper		171.2914		
4	Upper	244.5968		
5	Upper	171.2263		
6	Upper	171.1923		
7	Upper	268.1681		
Upper Bearing	Average Weight	Loss, mg		
Upper Bearing				
Upper Bearing	Minimum Weigh	t Loss, mg		
Upper Bearing	Maximum Weigh	nt Loss, mg		

Position #	Location	SOT Weight, g	EOT Weight, g	Weight Change, mg					
1	1 Lower								
2	Lower	187.9223							
3 Lower		188.0254							
4	Lower	282.2368							
5	Lower	188.1372							
6	Lower	188.0453							
7	Lower	282.0187							
Lower Bearing	Average Weight	Loss, mg							
Lower Bearing	Lower Bearing Weight Loss Std. Dev., mg								
Lower Bearing	Lower Bearing Minimum Weight Loss, mg								
Lower Bearing	Lower Bearing Maximum Weight Loss, mg								

Main Bearing Batch ID	

Ring Gap Measurements

Top Ring Gap. mm							
Cylinder No.	SOT	EOT	Delta (EOT - SOT)				
1	0.610	0.610	0.000				
2	0.635	0.660	0.025				
3	0.635	0.635	0.000				
4	0.610	0.610	0.000				
5	0.660	0.660	0.000				
6	0.610	0.635	0.025				
Average			0.008				

2nd Ring Gap. mm							
Cylinder No.	SOT	ЕОТ	Delta (EOT - SOT)				
1	0.432	0.457	0.025				
2	0.457	0.483	0.026				
3	0.432	0.457	0.025				
4	0.432	0.457	0.025				
5	0.432	0.432	0.000				
6	0.457	0.483	0.026				
Average			0.021				

Oil Ring Gap. mm							
Cylinder No.	SOT	EOT	Delta (EOT - SOT)				
1	0.508	0.533	0.025				
2	0.508	0.559	0.051				
3	0.483	0.533	0.050				
4	0.559	0.610	0.051				
5	0.559	0.610	0.051				
6	0.559	0.584	0.025				
Average			0.042				

Mack T-12

EGR Engine Oil Test

R

T-10 Merits Calculated with T-12 Results
Form 23

	Delta Pb @ EOT (ppm)	Avg. Liner Wear (<i>µ</i> m)	Avg, Top Ring Weight Loss (mg)	Oil Consumption (g/h)	Delta Pb 250-300h (ppm)
T-12 Final Original Unit Result	39	48.1	83		12
T-10 Mack Merits A	85.7	-1841.7	194.3		215.4
Total T-10 Mack Merits A			-1346.3		

A Non-reference Tests only.